Cargando…

SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range

Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Aalseth, C.E., Abdelhakim, S., Agnes, P., Ajaj, R., Albuquerque, I.F.M., Alexander, T., Alici, A., Alton, A.K., Amaudruz, P., Ameli, F., Anstey, J., Antonioli, P., Arba, M., Arcelli, S., Ardito, R., Arnquist, I.J., Arpaia, P., Asner, D.M., Asunskis, A., Ave, M., Back, H.O., Barbaryan, V., Barrado Olmedo, A., Batignani, G., Bisogni, M.G., Bocci, V., Bondar, A., Bonfini, G., Bonivento, W., Borisova, E., Bottino, B., Boulay, M.G., Bunker, R., Bussino, S., Buzulutskov, A., Cadeddu, M., Cadoni, M., Caminata, A., Canci, N., Candela, A., Cantini, C., Caravati, M., Cariello, M., Carnesecchi, F., Castellani, A., Castello, P., Cavalcante, P., Cavazza, D., Cavuoti, S., Cebrian, S., Cela Ruiz, J.M., Celano, B., Cereseto, R., Chashin, S., Cheng, W., Chepurnov, A., Cicalò, C., Cifarelli, L., Citterio, M., Coccetti, F., Cocco, V., Colocci, M., Conde Vidal, E., Consiglio, L., Cossio, F., Covone, G., Crivelli, P., D'Antone, I., D'Incecco, M., Da Rocha Rolo, M.D., Dadoun, O., Daniel, M., Davini, S., De Cecco, S., De Deo, M., De Falco, A., De Gruttola, D., De Guido, G., De Rosa, G., Dellacasa, G., Demontis, P., De Pasquale, S., Derbin, A.V., Devoto, A., Di Eusanio, F., Di Noto, L., Di Pietro, G., Di Stefano, P., Dionisi, C., Dolganov, G., Dordei, F., Downing, M., Edalatfar, F., Empl, A., Fernandez Diaz, M., Filip, C., Fiorillo, G., Fomenko, K., Franceschi, A., Franco, D., Frolov, E., Froudakis, G.E., Funicello, N., Gabriele, F., Gabrieli, A., Galbiati, C., Garbini, M., Garcia Abia, P., Gascón Fora, D., Gendotti, A., Ghiano, C., Ghisi, A., Giampa, P., Giampaolo, R.A., Giganti, C., Giorgi, M.A., Giovanetti, G.K., Gligan, M.L., Gorchakov, O., Grab, M., Graciani Diaz, R., Grassi, M., Grate, J.W., Grobov, A., Gromov, M., Guan, M., Guerra, M.B.B., Guerzoni, M., Gulino, M., Haaland, R.K., Hackett, B.R., Hallin, A., Haranczyk, M., Harrop, B., Hoppe, E.W., Horikawa, S., Hosseini, B., Hubaut, F., Humble, P., Hungerford, E.V., Ianni, An., Ilyasov, A., Ippolito, V., Jillings, C., Keeter, K., Kendziora, C.L., Kochanek, I., Kondo, K., Kopp, G., Korablev, D., Korga, G., Kubankin, A., Kugathasan, R., Kuss, M., La Commara, M., La Delfa, L., Lai, M., Lebois, M., Lehnert, B., Levashko, N., Li, X., Liqiang, Q., Lissia, M., Lodi, G.U., Longo, G., Lussana, R., Luzzi, L., Machado, A.A., Machulin, I.N., Mandarano, A., Manecki, S., Mapelli, L., Margotti, A., Mari, S.M., Mariani, M., Maricic, J., Marinelli, M., Marras, D., Martínez, M., Martinez Rojas, A.D., Mascia, M., Mason, J., Masoni, A., McDonald, A.B., Messina, A., Miletic, T., Milincic, R., Moggi, A., Moioli, S., Monroe, J., Morrocchi, M., Mroz, T., Mu, W., Muratova, V.N., Murphy, S., Muscas, C., Musico, P., Nania, R., Napolitano, T., Navrer Agasson, A., Nessi, M., Nikulin, I., Nosov, V., Nowak, J.A., Oleinik, A., Oleynikov, V., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Palmas, S., Pandola, L., Pantic, E., Paoloni, E., Pazzona, F., Peeters, S., Pegoraro, P.A., Pelczar, K., Pellegrini, L.A., Pellegrino, C., Pelliccia, N., Perotti, F., Pesudo, V., Picciau, E., Pietropaolo, F., Pocar, A., Pollmann, T.R., Portaluppi, D., Poudel, S.S., Pralavorio, P., Price, D., Radics, B., Raffaelli, F., Ragusa, F., Razeti, M., Regenfus, C., Renshaw, A.L., Rescia, S., Rescigno, M., Retiere, F., Rignanese, L.P., Ripoli, C., Rivetti, A., Rode, J., Romani, A., Romero, L., Rossi, N., Rubbia, A., Sala, P., Salatino, P., Samoylov, O., Sánchez García, E., Sandford, E., Sanfilippo, S., Sant, M., Santone, D., Santorelli, R., Savarese, C., Scapparone, E., Schlitzer, B., Scioli, G., Segreto, E., Seifert, A., Semenov, D.A., Shchagin, A., Sheshukov, A., Siddhanta, S., Simeone, M., Singh, P.N., Skensved, P., Skorokhvatov, M.D., Smirnov, O., Sobrero, G., Sokolov, A., Sotnikov, A., Stainforth, R., Steri, A., Stracka, S., Strickland, V., Suffritti, G.B., Sulis, S., Suvorov, Y., Szelc, A.M., Tartaglia, R., Testera, G., Thorpe, T., Tonazzo, A., Tosi, A., Tuveri, M., Unzhakov, E.V., Usai, G., Vacca, A., Vázquez-Jáuregui, E., Viant, T., Viel, S., Villa, F., Vishneva, A., Vogelaar, R.B., Wahl, J., Walding, J.J., Wang, H., Wang, Y., Westerdale, S., Wheadon, R.J., Williams, R., Wilson, J., Wojcik, Marcin, Wojcik, Mariusz, Wu, S., Xiao, X., Yang, C., Ye, Z., Zuffa, M., Zuzel, G.
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1140/epjc/s10052-020-08801-2
http://cds.cern.ch/record/2715407
Descripción
Sumario:Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science.