Cargando…
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector syst...
Autores principales: | Ju, Xiangyang, Farrell, Steven, Calafiura, Paolo, Murnane, Daniel, Prabhat, Gray, Lindsey, Klijnsma, Thomas, Pedro, Kevin, Cerati, Giuseppe, Kowalkowski, Jim, Perdue, Gabriel, Spentzouris, Panagiotis, Tran, Nhan, Vlimant, Jean-Roch, Zlokapa, Alexander, Pata, Joosep, Spiropulu, Maria, An, Sitong, Aurisano, Adam, Hewes, V., Hewes, Jeremy, Tsaris, Aristeidis, Terao, Kazuhiro, Usher, Tracy |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2715452 |
Ejemplares similares
-
ILC Reference Design Report Volume 4 - Detectors
por: Behnke, Ties, et al.
Publicado: (2007) -
First Years of Running for the LHCb Calorimeter System
por: Perret, Pascal
Publicado: (2014) -
Test and characterization of a prototype silicon-tungsten electromagnetic calorimeter
por: Muhuri, Sanjib, et al.
Publicado: (2014) -
The NA62 experiment at CERN: status and perspectives
por: Fantechi, Riccardo
Publicado: (2014) -
The Level-0 Muon Trigger for the LHCb Experiment
por: Aslanides, E., et al.
Publicado: (2007)