Cargando…
Towards a Computer Vision Particle Flow
In High Energy Physics experiments Particle Flow (PFlow) algorithms are designed to provide an optimal reconstruction of the nature and kinematic properties of the particles produced within the detector acceptance during collisions. At the heart of PFlow algorithms is the ability to distinguish the...
Autores principales: | Di Bello, Francesco Armando, Ganguly, Sanmay, Gross, Eilam, Kado, Marumi, Pitt, Michael, Santi, Lorenzo, Shlomi, Jonathan |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-021-08897-0 http://cds.cern.ch/record/2715739 |
Ejemplares similares
-
Goodness of fit by Neyman-Pearson testing
por: Grosso, Gaia, et al.
Publicado: (2023) -
Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters
por: Wunsch, Stefan, et al.
Publicado: (2020) -
Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
por: Di Bello, Francesco Armando, et al.
Publicado: (2022) -
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
por: Qasim, Shah Rukh, et al.
Publicado: (2019) -
Jet Flavour Classification Using DeepJet
por: Bols, Emil, et al.
Publicado: (2020)