Cargando…
Particle Track Reconstruction with Quantum Algorithms
Accurate determination of particle track reconstruction parameters will be a major challenge for the High Luminosity Large Hadron Collider (HL-LHC) experiments. The expected increase in the number of simultaneous collisions at the HL-LHC and the resulting high detector occupancy will make track reco...
Autores principales: | Tüysüz, Cenk, Carminati, Federico, Demirköz, Bilge, Dobos, Daniel, Fracas, Fabio, Novotny, Kristiane, Potamianos, Karolos, Vallecorsa, Sofia, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024509013 http://cds.cern.ch/record/2716204 |
Ejemplares similares
-
A Quantum Graph Neural Network Approach to Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Performance of Particle Tracking Using a Quantum Graph Neural Network
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2021) -
Quantum Track Reconstruction Algorithms for non-HEP applications
por: Novotny, Kristiane Sylvia, et al.
Publicado: (2021) -
Embedding of particle tracking data using hybrid quantum-classical neural networks
por: Rieger, Carla, et al.
Publicado: (2021)