_version_ 1780965573136482304
author Acerbi, F.
Berra, A.
Bonesini, M.
Branca, A.
Brizzolari, C.
Brunetti, G.
Calviani, M.
Capelli, S.
Carturan, S.
Catanesi, M.G.
Cecchini, S.
Charitonidis, N.
Cindolo, F.
Collazuol, G.
Conti, E.
Dal Corso, F.
Delogu, C.
De Rosa, G.
Falcone, A.
Gola, A.
Jollet, C.
Kain, V.
Klićek, B.
Kudenko, Y.
Laveder, M.
Longhin, A.
Ludovici, L.
Lutsenko, E.
Magaletti, L.
Mandrioli, G.
Margotti, A.
Mascagna, V.
Mauri, N.
Meazza, L.
Meregaglia, A.
Mezzetto, M.
Nessi, M.
Paoloni, A.
Pari, M.
Parozzi, E.
Pasqualini, L.
Paternoster, G.
Patrizii, L.
Pozzato, M.
Prest, M.
Pupilli, F.
Radicioni, E.
Riccio, C.
Ruggeri, A.C.
Scian, C.
Sirri, G.
Stipćevic, M.
Tenti, M.
Terranova, F.
Torti, M.
Vallazza, E.
Velotti, F.
Vesco, M.
Votano, L.
author_facet Acerbi, F.
Berra, A.
Bonesini, M.
Branca, A.
Brizzolari, C.
Brunetti, G.
Calviani, M.
Capelli, S.
Carturan, S.
Catanesi, M.G.
Cecchini, S.
Charitonidis, N.
Cindolo, F.
Collazuol, G.
Conti, E.
Dal Corso, F.
Delogu, C.
De Rosa, G.
Falcone, A.
Gola, A.
Jollet, C.
Kain, V.
Klićek, B.
Kudenko, Y.
Laveder, M.
Longhin, A.
Ludovici, L.
Lutsenko, E.
Magaletti, L.
Mandrioli, G.
Margotti, A.
Mascagna, V.
Mauri, N.
Meazza, L.
Meregaglia, A.
Mezzetto, M.
Nessi, M.
Paoloni, A.
Pari, M.
Parozzi, E.
Pasqualini, L.
Paternoster, G.
Patrizii, L.
Pozzato, M.
Prest, M.
Pupilli, F.
Radicioni, E.
Riccio, C.
Ruggeri, A.C.
Scian, C.
Sirri, G.
Stipćevic, M.
Tenti, M.
Terranova, F.
Torti, M.
Vallazza, E.
Velotti, F.
Vesco, M.
Votano, L.
author_sort Acerbi, F.
collection CERN
description The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016–2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with νe in the three body decays of kaons (Ke3) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/π separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.
id cern-2717112
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27171122023-04-04T03:36:00Zdoi:10.1088/1748-0221/15/05/C05059http://cds.cern.ch/record/2717112engAcerbi, F.Berra, A.Bonesini, M.Branca, A.Brizzolari, C.Brunetti, G.Calviani, M.Capelli, S.Carturan, S.Catanesi, M.G.Cecchini, S.Charitonidis, N.Cindolo, F.Collazuol, G.Conti, E.Dal Corso, F.Delogu, C.De Rosa, G.Falcone, A.Gola, A.Jollet, C.Kain, V.Klićek, B.Kudenko, Y.Laveder, M.Longhin, A.Ludovici, L.Lutsenko, E.Magaletti, L.Mandrioli, G.Margotti, A.Mascagna, V.Mauri, N.Meazza, L.Meregaglia, A.Mezzetto, M.Nessi, M.Paoloni, A.Pari, M.Parozzi, E.Pasqualini, L.Paternoster, G.Patrizii, L.Pozzato, M.Prest, M.Pupilli, F.Radicioni, E.Riccio, C.Ruggeri, A.C.Scian, C.Sirri, G.Stipćevic, M.Tenti, M.Terranova, F.Torti, M.Vallazza, E.Velotti, F.Vesco, M.Votano, L.Decay tunnel instrumentation for the ENUBET neutrino beamhep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesThe uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016–2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with νe in the three body decays of kaons (Ke3) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/π separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $\nu_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$\pi$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.arXiv:2004.02532oai:cds.cern.ch:27171122020-04-06
spellingShingle hep-ex
Particle Physics - Experiment
physics.ins-det
Detectors and Experimental Techniques
Acerbi, F.
Berra, A.
Bonesini, M.
Branca, A.
Brizzolari, C.
Brunetti, G.
Calviani, M.
Capelli, S.
Carturan, S.
Catanesi, M.G.
Cecchini, S.
Charitonidis, N.
Cindolo, F.
Collazuol, G.
Conti, E.
Dal Corso, F.
Delogu, C.
De Rosa, G.
Falcone, A.
Gola, A.
Jollet, C.
Kain, V.
Klićek, B.
Kudenko, Y.
Laveder, M.
Longhin, A.
Ludovici, L.
Lutsenko, E.
Magaletti, L.
Mandrioli, G.
Margotti, A.
Mascagna, V.
Mauri, N.
Meazza, L.
Meregaglia, A.
Mezzetto, M.
Nessi, M.
Paoloni, A.
Pari, M.
Parozzi, E.
Pasqualini, L.
Paternoster, G.
Patrizii, L.
Pozzato, M.
Prest, M.
Pupilli, F.
Radicioni, E.
Riccio, C.
Ruggeri, A.C.
Scian, C.
Sirri, G.
Stipćevic, M.
Tenti, M.
Terranova, F.
Torti, M.
Vallazza, E.
Velotti, F.
Vesco, M.
Votano, L.
Decay tunnel instrumentation for the ENUBET neutrino beam
title Decay tunnel instrumentation for the ENUBET neutrino beam
title_full Decay tunnel instrumentation for the ENUBET neutrino beam
title_fullStr Decay tunnel instrumentation for the ENUBET neutrino beam
title_full_unstemmed Decay tunnel instrumentation for the ENUBET neutrino beam
title_short Decay tunnel instrumentation for the ENUBET neutrino beam
title_sort decay tunnel instrumentation for the enubet neutrino beam
topic hep-ex
Particle Physics - Experiment
physics.ins-det
Detectors and Experimental Techniques
url https://dx.doi.org/10.1088/1748-0221/15/05/C05059
http://cds.cern.ch/record/2717112
work_keys_str_mv AT acerbif decaytunnelinstrumentationfortheenubetneutrinobeam
AT berraa decaytunnelinstrumentationfortheenubetneutrinobeam
AT bonesinim decaytunnelinstrumentationfortheenubetneutrinobeam
AT brancaa decaytunnelinstrumentationfortheenubetneutrinobeam
AT brizzolaric decaytunnelinstrumentationfortheenubetneutrinobeam
AT brunettig decaytunnelinstrumentationfortheenubetneutrinobeam
AT calvianim decaytunnelinstrumentationfortheenubetneutrinobeam
AT capellis decaytunnelinstrumentationfortheenubetneutrinobeam
AT carturans decaytunnelinstrumentationfortheenubetneutrinobeam
AT catanesimg decaytunnelinstrumentationfortheenubetneutrinobeam
AT cecchinis decaytunnelinstrumentationfortheenubetneutrinobeam
AT charitonidisn decaytunnelinstrumentationfortheenubetneutrinobeam
AT cindolof decaytunnelinstrumentationfortheenubetneutrinobeam
AT collazuolg decaytunnelinstrumentationfortheenubetneutrinobeam
AT contie decaytunnelinstrumentationfortheenubetneutrinobeam
AT dalcorsof decaytunnelinstrumentationfortheenubetneutrinobeam
AT deloguc decaytunnelinstrumentationfortheenubetneutrinobeam
AT derosag decaytunnelinstrumentationfortheenubetneutrinobeam
AT falconea decaytunnelinstrumentationfortheenubetneutrinobeam
AT golaa decaytunnelinstrumentationfortheenubetneutrinobeam
AT jolletc decaytunnelinstrumentationfortheenubetneutrinobeam
AT kainv decaytunnelinstrumentationfortheenubetneutrinobeam
AT klicekb decaytunnelinstrumentationfortheenubetneutrinobeam
AT kudenkoy decaytunnelinstrumentationfortheenubetneutrinobeam
AT lavederm decaytunnelinstrumentationfortheenubetneutrinobeam
AT longhina decaytunnelinstrumentationfortheenubetneutrinobeam
AT ludovicil decaytunnelinstrumentationfortheenubetneutrinobeam
AT lutsenkoe decaytunnelinstrumentationfortheenubetneutrinobeam
AT magalettil decaytunnelinstrumentationfortheenubetneutrinobeam
AT mandriolig decaytunnelinstrumentationfortheenubetneutrinobeam
AT margottia decaytunnelinstrumentationfortheenubetneutrinobeam
AT mascagnav decaytunnelinstrumentationfortheenubetneutrinobeam
AT maurin decaytunnelinstrumentationfortheenubetneutrinobeam
AT meazzal decaytunnelinstrumentationfortheenubetneutrinobeam
AT meregagliaa decaytunnelinstrumentationfortheenubetneutrinobeam
AT mezzettom decaytunnelinstrumentationfortheenubetneutrinobeam
AT nessim decaytunnelinstrumentationfortheenubetneutrinobeam
AT paolonia decaytunnelinstrumentationfortheenubetneutrinobeam
AT parim decaytunnelinstrumentationfortheenubetneutrinobeam
AT parozzie decaytunnelinstrumentationfortheenubetneutrinobeam
AT pasqualinil decaytunnelinstrumentationfortheenubetneutrinobeam
AT paternosterg decaytunnelinstrumentationfortheenubetneutrinobeam
AT patriziil decaytunnelinstrumentationfortheenubetneutrinobeam
AT pozzatom decaytunnelinstrumentationfortheenubetneutrinobeam
AT prestm decaytunnelinstrumentationfortheenubetneutrinobeam
AT pupillif decaytunnelinstrumentationfortheenubetneutrinobeam
AT radicionie decaytunnelinstrumentationfortheenubetneutrinobeam
AT riccioc decaytunnelinstrumentationfortheenubetneutrinobeam
AT ruggeriac decaytunnelinstrumentationfortheenubetneutrinobeam
AT scianc decaytunnelinstrumentationfortheenubetneutrinobeam
AT sirrig decaytunnelinstrumentationfortheenubetneutrinobeam
AT stipcevicm decaytunnelinstrumentationfortheenubetneutrinobeam
AT tentim decaytunnelinstrumentationfortheenubetneutrinobeam
AT terranovaf decaytunnelinstrumentationfortheenubetneutrinobeam
AT tortim decaytunnelinstrumentationfortheenubetneutrinobeam
AT vallazzae decaytunnelinstrumentationfortheenubetneutrinobeam
AT velottif decaytunnelinstrumentationfortheenubetneutrinobeam
AT vescom decaytunnelinstrumentationfortheenubetneutrinobeam
AT votanol decaytunnelinstrumentationfortheenubetneutrinobeam