Cargando…
Decay tunnel instrumentation for the ENUBET neutrino beam
The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016–2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold impr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/15/05/C05059 http://cds.cern.ch/record/2717112 |
_version_ | 1780965573136482304 |
---|---|
author | Acerbi, F. Berra, A. Bonesini, M. Branca, A. Brizzolari, C. Brunetti, G. Calviani, M. Capelli, S. Carturan, S. Catanesi, M.G. Cecchini, S. Charitonidis, N. Cindolo, F. Collazuol, G. Conti, E. Dal Corso, F. Delogu, C. De Rosa, G. Falcone, A. Gola, A. Jollet, C. Kain, V. Klićek, B. Kudenko, Y. Laveder, M. Longhin, A. Ludovici, L. Lutsenko, E. Magaletti, L. Mandrioli, G. Margotti, A. Mascagna, V. Mauri, N. Meazza, L. Meregaglia, A. Mezzetto, M. Nessi, M. Paoloni, A. Pari, M. Parozzi, E. Pasqualini, L. Paternoster, G. Patrizii, L. Pozzato, M. Prest, M. Pupilli, F. Radicioni, E. Riccio, C. Ruggeri, A.C. Scian, C. Sirri, G. Stipćevic, M. Tenti, M. Terranova, F. Torti, M. Vallazza, E. Velotti, F. Vesco, M. Votano, L. |
author_facet | Acerbi, F. Berra, A. Bonesini, M. Branca, A. Brizzolari, C. Brunetti, G. Calviani, M. Capelli, S. Carturan, S. Catanesi, M.G. Cecchini, S. Charitonidis, N. Cindolo, F. Collazuol, G. Conti, E. Dal Corso, F. Delogu, C. De Rosa, G. Falcone, A. Gola, A. Jollet, C. Kain, V. Klićek, B. Kudenko, Y. Laveder, M. Longhin, A. Ludovici, L. Lutsenko, E. Magaletti, L. Mandrioli, G. Margotti, A. Mascagna, V. Mauri, N. Meazza, L. Meregaglia, A. Mezzetto, M. Nessi, M. Paoloni, A. Pari, M. Parozzi, E. Pasqualini, L. Paternoster, G. Patrizii, L. Pozzato, M. Prest, M. Pupilli, F. Radicioni, E. Riccio, C. Ruggeri, A.C. Scian, C. Sirri, G. Stipćevic, M. Tenti, M. Terranova, F. Torti, M. Vallazza, E. Velotti, F. Vesco, M. Votano, L. |
author_sort | Acerbi, F. |
collection | CERN |
description | The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016–2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with νe in the three body decays of kaons (Ke3) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/π separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021. |
id | cern-2717112 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-27171122023-04-04T03:36:00Zdoi:10.1088/1748-0221/15/05/C05059http://cds.cern.ch/record/2717112engAcerbi, F.Berra, A.Bonesini, M.Branca, A.Brizzolari, C.Brunetti, G.Calviani, M.Capelli, S.Carturan, S.Catanesi, M.G.Cecchini, S.Charitonidis, N.Cindolo, F.Collazuol, G.Conti, E.Dal Corso, F.Delogu, C.De Rosa, G.Falcone, A.Gola, A.Jollet, C.Kain, V.Klićek, B.Kudenko, Y.Laveder, M.Longhin, A.Ludovici, L.Lutsenko, E.Magaletti, L.Mandrioli, G.Margotti, A.Mascagna, V.Mauri, N.Meazza, L.Meregaglia, A.Mezzetto, M.Nessi, M.Paoloni, A.Pari, M.Parozzi, E.Pasqualini, L.Paternoster, G.Patrizii, L.Pozzato, M.Prest, M.Pupilli, F.Radicioni, E.Riccio, C.Ruggeri, A.C.Scian, C.Sirri, G.Stipćevic, M.Tenti, M.Terranova, F.Torti, M.Vallazza, E.Velotti, F.Vesco, M.Votano, L.Decay tunnel instrumentation for the ENUBET neutrino beamhep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesThe uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016–2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with νe in the three body decays of kaons (Ke3) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/π separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $\nu_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$\pi$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.arXiv:2004.02532oai:cds.cern.ch:27171122020-04-06 |
spellingShingle | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques Acerbi, F. Berra, A. Bonesini, M. Branca, A. Brizzolari, C. Brunetti, G. Calviani, M. Capelli, S. Carturan, S. Catanesi, M.G. Cecchini, S. Charitonidis, N. Cindolo, F. Collazuol, G. Conti, E. Dal Corso, F. Delogu, C. De Rosa, G. Falcone, A. Gola, A. Jollet, C. Kain, V. Klićek, B. Kudenko, Y. Laveder, M. Longhin, A. Ludovici, L. Lutsenko, E. Magaletti, L. Mandrioli, G. Margotti, A. Mascagna, V. Mauri, N. Meazza, L. Meregaglia, A. Mezzetto, M. Nessi, M. Paoloni, A. Pari, M. Parozzi, E. Pasqualini, L. Paternoster, G. Patrizii, L. Pozzato, M. Prest, M. Pupilli, F. Radicioni, E. Riccio, C. Ruggeri, A.C. Scian, C. Sirri, G. Stipćevic, M. Tenti, M. Terranova, F. Torti, M. Vallazza, E. Velotti, F. Vesco, M. Votano, L. Decay tunnel instrumentation for the ENUBET neutrino beam |
title | Decay tunnel instrumentation for the ENUBET neutrino beam |
title_full | Decay tunnel instrumentation for the ENUBET neutrino beam |
title_fullStr | Decay tunnel instrumentation for the ENUBET neutrino beam |
title_full_unstemmed | Decay tunnel instrumentation for the ENUBET neutrino beam |
title_short | Decay tunnel instrumentation for the ENUBET neutrino beam |
title_sort | decay tunnel instrumentation for the enubet neutrino beam |
topic | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1088/1748-0221/15/05/C05059 http://cds.cern.ch/record/2717112 |
work_keys_str_mv | AT acerbif decaytunnelinstrumentationfortheenubetneutrinobeam AT berraa decaytunnelinstrumentationfortheenubetneutrinobeam AT bonesinim decaytunnelinstrumentationfortheenubetneutrinobeam AT brancaa decaytunnelinstrumentationfortheenubetneutrinobeam AT brizzolaric decaytunnelinstrumentationfortheenubetneutrinobeam AT brunettig decaytunnelinstrumentationfortheenubetneutrinobeam AT calvianim decaytunnelinstrumentationfortheenubetneutrinobeam AT capellis decaytunnelinstrumentationfortheenubetneutrinobeam AT carturans decaytunnelinstrumentationfortheenubetneutrinobeam AT catanesimg decaytunnelinstrumentationfortheenubetneutrinobeam AT cecchinis decaytunnelinstrumentationfortheenubetneutrinobeam AT charitonidisn decaytunnelinstrumentationfortheenubetneutrinobeam AT cindolof decaytunnelinstrumentationfortheenubetneutrinobeam AT collazuolg decaytunnelinstrumentationfortheenubetneutrinobeam AT contie decaytunnelinstrumentationfortheenubetneutrinobeam AT dalcorsof decaytunnelinstrumentationfortheenubetneutrinobeam AT deloguc decaytunnelinstrumentationfortheenubetneutrinobeam AT derosag decaytunnelinstrumentationfortheenubetneutrinobeam AT falconea decaytunnelinstrumentationfortheenubetneutrinobeam AT golaa decaytunnelinstrumentationfortheenubetneutrinobeam AT jolletc decaytunnelinstrumentationfortheenubetneutrinobeam AT kainv decaytunnelinstrumentationfortheenubetneutrinobeam AT klicekb decaytunnelinstrumentationfortheenubetneutrinobeam AT kudenkoy decaytunnelinstrumentationfortheenubetneutrinobeam AT lavederm decaytunnelinstrumentationfortheenubetneutrinobeam AT longhina decaytunnelinstrumentationfortheenubetneutrinobeam AT ludovicil decaytunnelinstrumentationfortheenubetneutrinobeam AT lutsenkoe decaytunnelinstrumentationfortheenubetneutrinobeam AT magalettil decaytunnelinstrumentationfortheenubetneutrinobeam AT mandriolig decaytunnelinstrumentationfortheenubetneutrinobeam AT margottia decaytunnelinstrumentationfortheenubetneutrinobeam AT mascagnav decaytunnelinstrumentationfortheenubetneutrinobeam AT maurin decaytunnelinstrumentationfortheenubetneutrinobeam AT meazzal decaytunnelinstrumentationfortheenubetneutrinobeam AT meregagliaa decaytunnelinstrumentationfortheenubetneutrinobeam AT mezzettom decaytunnelinstrumentationfortheenubetneutrinobeam AT nessim decaytunnelinstrumentationfortheenubetneutrinobeam AT paolonia decaytunnelinstrumentationfortheenubetneutrinobeam AT parim decaytunnelinstrumentationfortheenubetneutrinobeam AT parozzie decaytunnelinstrumentationfortheenubetneutrinobeam AT pasqualinil decaytunnelinstrumentationfortheenubetneutrinobeam AT paternosterg decaytunnelinstrumentationfortheenubetneutrinobeam AT patriziil decaytunnelinstrumentationfortheenubetneutrinobeam AT pozzatom decaytunnelinstrumentationfortheenubetneutrinobeam AT prestm decaytunnelinstrumentationfortheenubetneutrinobeam AT pupillif decaytunnelinstrumentationfortheenubetneutrinobeam AT radicionie decaytunnelinstrumentationfortheenubetneutrinobeam AT riccioc decaytunnelinstrumentationfortheenubetneutrinobeam AT ruggeriac decaytunnelinstrumentationfortheenubetneutrinobeam AT scianc decaytunnelinstrumentationfortheenubetneutrinobeam AT sirrig decaytunnelinstrumentationfortheenubetneutrinobeam AT stipcevicm decaytunnelinstrumentationfortheenubetneutrinobeam AT tentim decaytunnelinstrumentationfortheenubetneutrinobeam AT terranovaf decaytunnelinstrumentationfortheenubetneutrinobeam AT tortim decaytunnelinstrumentationfortheenubetneutrinobeam AT vallazzae decaytunnelinstrumentationfortheenubetneutrinobeam AT velottif decaytunnelinstrumentationfortheenubetneutrinobeam AT vescom decaytunnelinstrumentationfortheenubetneutrinobeam AT votanol decaytunnelinstrumentationfortheenubetneutrinobeam |