Cargando…
Improved classification rates for localized algorithms under margin conditions
Support vector machines (SVMs) are one of the most successful algorithms on small and medium-sized data sets, but on large-scale data sets their training and predictions become computationally infeasible. The author considers a spatially defined data chunking method for large-scale learning problems...
Autor principal: | Blaschzyk, Ingrid Karin |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-658-29591-2 http://cds.cern.ch/record/2717179 |
Ejemplares similares
-
Classification algorithms for codes and designs
por: Kaski, Petteri, et al.
Publicado: (2006) -
Algorithmic topology and classification of 3-manifolds
por: Matveev, Sergei
Publicado: (2003) -
Algorithms and classification in combinatorial group theory
por: Baumslag, Gilbert, et al.
Publicado: (1992) -
Algorithmic topology and classification of 3-manifolds
por: Matveev, Sergei
Publicado: (2007) -
Condition: the geometry of numerical algorithms
por: Bürgisser, Peter, et al.
Publicado: (2013)