Cargando…
Shrinkage estimation for mean and covariance matrices
This book provides a self-contained introduction to shrinkage estimation for matrix-variate normal distribution models. More specifically, it presents recent techniques and results in estimation of mean and covariance matrices with a high-dimensional setting that implies singularity of the sample co...
Autores principales: | Tsukuma, Hisayuki, Kubokawa, Tatsuya |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-981-15-1596-5 http://cds.cern.ch/record/2717234 |
Ejemplares similares
-
Large covariance and autocovariance matrices
por: Bose, Arup, et al.
Publicado: (2018) -
Shrinkage estimation
por: Fourdrinier, Dominique, et al.
Publicado: (2018) -
Matrices: their meaning and manipulation
por: Bickley, William G, et al.
Publicado: (1964) -
SU$_{q}$(2) covariant $\widehat{R}$-matrices for reducible representations
por: Lorek, A, et al.
Publicado: (1993) -
Penalty, shrinkage and pretest strategies: variable selection and estimation
por: Ahmed, S Ejaz
Publicado: (2014)