Cargando…

GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

Full detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from i...

Descripción completa

Detalles Bibliográficos
Autores principales: Amadio, G., Ananya, A., Apostolakis, J., Bandieramonte, M., Banerjee, S., Bhattacharyya, A., Bianchini, C., Bitzes, G., Canal, P., Carminati, F., Chaparro-Amaro, O., Cosmo, G., De Fine Licht, J.C., Drogan, V., Duhem, L., Elvira, D., Fuentes, J., Gheata, A., Gheata, M., Gravey, M., Goulas, I., Hariri, F., Jun, S.Y., Konstantinov, D., Kumawat, H., Lima, J.G., Maldonado-Romo, A., Martínez-Castro, J., Mato, P., Nikitina, T., Novaes, S., Novak, M., Pedro, Kevin, Pokorski, W., Ribon, A., Schmitz, R., Seghal, R., Shadura, O., Tcherniaev, E., Vallecorsa, S., Wenzel, S., Zhang, Y.
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1007/s41781-020-00048-6
http://cds.cern.ch/record/2718077
_version_ 1780965643242176512
author Amadio, G.
Ananya, A.
Apostolakis, J.
Bandieramonte, M.
Banerjee, S.
Bhattacharyya, A.
Bianchini, C.
Bitzes, G.
Canal, P.
Carminati, F.
Chaparro-Amaro, O.
Cosmo, G.
De Fine Licht, J.C.
Drogan, V.
Duhem, L.
Elvira, D.
Fuentes, J.
Gheata, A.
Gheata, M.
Gravey, M.
Goulas, I.
Hariri, F.
Jun, S.Y.
Konstantinov, D.
Kumawat, H.
Lima, J.G.
Maldonado-Romo, A.
Martínez-Castro, J.
Mato, P.
Nikitina, T.
Novaes, S.
Novak, M.
Pedro, Kevin
Pokorski, W.
Ribon, A.
Schmitz, R.
Seghal, R.
Shadura, O.
Tcherniaev, E.
Vallecorsa, S.
Wenzel, S.
Zhang, Y.
author_facet Amadio, G.
Ananya, A.
Apostolakis, J.
Bandieramonte, M.
Banerjee, S.
Bhattacharyya, A.
Bianchini, C.
Bitzes, G.
Canal, P.
Carminati, F.
Chaparro-Amaro, O.
Cosmo, G.
De Fine Licht, J.C.
Drogan, V.
Duhem, L.
Elvira, D.
Fuentes, J.
Gheata, A.
Gheata, M.
Gravey, M.
Goulas, I.
Hariri, F.
Jun, S.Y.
Konstantinov, D.
Kumawat, H.
Lima, J.G.
Maldonado-Romo, A.
Martínez-Castro, J.
Mato, P.
Nikitina, T.
Novaes, S.
Novak, M.
Pedro, Kevin
Pokorski, W.
Ribon, A.
Schmitz, R.
Seghal, R.
Shadura, O.
Tcherniaev, E.
Vallecorsa, S.
Wenzel, S.
Zhang, Y.
author_sort Amadio, G.
collection CERN
description Full detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from increasing computing resources. The extension of fast simulation approaches to cover more use cases that represent a larger fraction of the simulation budget is only part of the solution, because of intrinsic precision limitations. The remainder corresponds to speeding up the simulation software by several factors, which is not achievable by just applying simple optimizations to the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport code in order to benefit from features of fine-grained parallelism, including vectorization and increased locality of both instruction and data. This paper provides an extensive presentation of the results and achievements of this R&D project, as well as the conclusions and lessons learned from the beta version prototype.
id cern-2718077
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27180772023-04-04T03:21:14Zdoi:10.1007/s41781-020-00048-6http://cds.cern.ch/record/2718077engAmadio, G.Ananya, A.Apostolakis, J.Bandieramonte, M.Banerjee, S.Bhattacharyya, A.Bianchini, C.Bitzes, G.Canal, P.Carminati, F.Chaparro-Amaro, O.Cosmo, G.De Fine Licht, J.C.Drogan, V.Duhem, L.Elvira, D.Fuentes, J.Gheata, A.Gheata, M.Gravey, M.Goulas, I.Hariri, F.Jun, S.Y.Konstantinov, D.Kumawat, H.Lima, J.G.Maldonado-Romo, A.Martínez-Castro, J.Mato, P.Nikitina, T.Novaes, S.Novak, M.Pedro, KevinPokorski, W.Ribon, A.Schmitz, R.Seghal, R.Shadura, O.Tcherniaev, E.Vallecorsa, S.Wenzel, S.Zhang, Y.GeantV: Results from the prototype of concurrent vector particle transport simulation in HEPhep-exParticle Physics - Experimentphysics.comp-phOther Fields of PhysicsFull detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from increasing computing resources. The extension of fast simulation approaches to cover more use cases that represent a larger fraction of the simulation budget is only part of the solution, because of intrinsic precision limitations. The remainder corresponds to speeding up the simulation software by several factors, which is not achievable by just applying simple optimizations to the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport code in order to benefit from features of fine-grained parallelism, including vectorization and increased locality of both instruction and data. This paper provides an extensive presentation of the results and achievements of this R&D project, as well as the conclusions and lessons learned from the beta version prototype.Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.arXiv:2005.00949FERMILAB-PUB-20-200-SCDoai:cds.cern.ch:27180772020-05-02
spellingShingle hep-ex
Particle Physics - Experiment
physics.comp-ph
Other Fields of Physics
Amadio, G.
Ananya, A.
Apostolakis, J.
Bandieramonte, M.
Banerjee, S.
Bhattacharyya, A.
Bianchini, C.
Bitzes, G.
Canal, P.
Carminati, F.
Chaparro-Amaro, O.
Cosmo, G.
De Fine Licht, J.C.
Drogan, V.
Duhem, L.
Elvira, D.
Fuentes, J.
Gheata, A.
Gheata, M.
Gravey, M.
Goulas, I.
Hariri, F.
Jun, S.Y.
Konstantinov, D.
Kumawat, H.
Lima, J.G.
Maldonado-Romo, A.
Martínez-Castro, J.
Mato, P.
Nikitina, T.
Novaes, S.
Novak, M.
Pedro, Kevin
Pokorski, W.
Ribon, A.
Schmitz, R.
Seghal, R.
Shadura, O.
Tcherniaev, E.
Vallecorsa, S.
Wenzel, S.
Zhang, Y.
GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
title GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
title_full GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
title_fullStr GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
title_full_unstemmed GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
title_short GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
title_sort geantv: results from the prototype of concurrent vector particle transport simulation in hep
topic hep-ex
Particle Physics - Experiment
physics.comp-ph
Other Fields of Physics
url https://dx.doi.org/10.1007/s41781-020-00048-6
http://cds.cern.ch/record/2718077
work_keys_str_mv AT amadiog geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT ananyaa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT apostolakisj geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT bandieramontem geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT banerjees geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT bhattacharyyaa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT bianchinic geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT bitzesg geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT canalp geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT carminatif geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT chaparroamaroo geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT cosmog geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT definelichtjc geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT droganv geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT duheml geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT elvirad geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT fuentesj geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT gheataa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT gheatam geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT graveym geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT goulasi geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT haririf geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT junsy geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT konstantinovd geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT kumawath geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT limajg geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT maldonadoromoa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT martinezcastroj geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT matop geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT nikitinat geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT novaess geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT novakm geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT pedrokevin geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT pokorskiw geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT ribona geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT schmitzr geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT seghalr geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT shadurao geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT tcherniaeve geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT vallecorsas geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT wenzels geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep
AT zhangy geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep