Cargando…
GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
Full detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-020-00048-6 http://cds.cern.ch/record/2718077 |
_version_ | 1780965643242176512 |
---|---|
author | Amadio, G. Ananya, A. Apostolakis, J. Bandieramonte, M. Banerjee, S. Bhattacharyya, A. Bianchini, C. Bitzes, G. Canal, P. Carminati, F. Chaparro-Amaro, O. Cosmo, G. De Fine Licht, J.C. Drogan, V. Duhem, L. Elvira, D. Fuentes, J. Gheata, A. Gheata, M. Gravey, M. Goulas, I. Hariri, F. Jun, S.Y. Konstantinov, D. Kumawat, H. Lima, J.G. Maldonado-Romo, A. Martínez-Castro, J. Mato, P. Nikitina, T. Novaes, S. Novak, M. Pedro, Kevin Pokorski, W. Ribon, A. Schmitz, R. Seghal, R. Shadura, O. Tcherniaev, E. Vallecorsa, S. Wenzel, S. Zhang, Y. |
author_facet | Amadio, G. Ananya, A. Apostolakis, J. Bandieramonte, M. Banerjee, S. Bhattacharyya, A. Bianchini, C. Bitzes, G. Canal, P. Carminati, F. Chaparro-Amaro, O. Cosmo, G. De Fine Licht, J.C. Drogan, V. Duhem, L. Elvira, D. Fuentes, J. Gheata, A. Gheata, M. Gravey, M. Goulas, I. Hariri, F. Jun, S.Y. Konstantinov, D. Kumawat, H. Lima, J.G. Maldonado-Romo, A. Martínez-Castro, J. Mato, P. Nikitina, T. Novaes, S. Novak, M. Pedro, Kevin Pokorski, W. Ribon, A. Schmitz, R. Seghal, R. Shadura, O. Tcherniaev, E. Vallecorsa, S. Wenzel, S. Zhang, Y. |
author_sort | Amadio, G. |
collection | CERN |
description | Full detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from increasing computing resources. The extension of fast simulation approaches to cover more use cases that represent a larger fraction of the simulation budget is only part of the solution, because of intrinsic precision limitations. The remainder corresponds to speeding up the simulation software by several factors, which is not achievable by just applying simple optimizations to the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport code in order to benefit from features of fine-grained parallelism, including vectorization and increased locality of both instruction and data. This paper provides an extensive presentation of the results and achievements of this R&D project, as well as the conclusions and lessons learned from the beta version prototype. |
id | cern-2718077 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-27180772023-04-04T03:21:14Zdoi:10.1007/s41781-020-00048-6http://cds.cern.ch/record/2718077engAmadio, G.Ananya, A.Apostolakis, J.Bandieramonte, M.Banerjee, S.Bhattacharyya, A.Bianchini, C.Bitzes, G.Canal, P.Carminati, F.Chaparro-Amaro, O.Cosmo, G.De Fine Licht, J.C.Drogan, V.Duhem, L.Elvira, D.Fuentes, J.Gheata, A.Gheata, M.Gravey, M.Goulas, I.Hariri, F.Jun, S.Y.Konstantinov, D.Kumawat, H.Lima, J.G.Maldonado-Romo, A.Martínez-Castro, J.Mato, P.Nikitina, T.Novaes, S.Novak, M.Pedro, KevinPokorski, W.Ribon, A.Schmitz, R.Seghal, R.Shadura, O.Tcherniaev, E.Vallecorsa, S.Wenzel, S.Zhang, Y.GeantV: Results from the prototype of concurrent vector particle transport simulation in HEPhep-exParticle Physics - Experimentphysics.comp-phOther Fields of PhysicsFull detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from increasing computing resources. The extension of fast simulation approaches to cover more use cases that represent a larger fraction of the simulation budget is only part of the solution, because of intrinsic precision limitations. The remainder corresponds to speeding up the simulation software by several factors, which is not achievable by just applying simple optimizations to the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport code in order to benefit from features of fine-grained parallelism, including vectorization and increased locality of both instruction and data. This paper provides an extensive presentation of the results and achievements of this R&D project, as well as the conclusions and lessons learned from the beta version prototype.Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.arXiv:2005.00949FERMILAB-PUB-20-200-SCDoai:cds.cern.ch:27180772020-05-02 |
spellingShingle | hep-ex Particle Physics - Experiment physics.comp-ph Other Fields of Physics Amadio, G. Ananya, A. Apostolakis, J. Bandieramonte, M. Banerjee, S. Bhattacharyya, A. Bianchini, C. Bitzes, G. Canal, P. Carminati, F. Chaparro-Amaro, O. Cosmo, G. De Fine Licht, J.C. Drogan, V. Duhem, L. Elvira, D. Fuentes, J. Gheata, A. Gheata, M. Gravey, M. Goulas, I. Hariri, F. Jun, S.Y. Konstantinov, D. Kumawat, H. Lima, J.G. Maldonado-Romo, A. Martínez-Castro, J. Mato, P. Nikitina, T. Novaes, S. Novak, M. Pedro, Kevin Pokorski, W. Ribon, A. Schmitz, R. Seghal, R. Shadura, O. Tcherniaev, E. Vallecorsa, S. Wenzel, S. Zhang, Y. GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP |
title | GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP |
title_full | GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP |
title_fullStr | GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP |
title_full_unstemmed | GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP |
title_short | GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP |
title_sort | geantv: results from the prototype of concurrent vector particle transport simulation in hep |
topic | hep-ex Particle Physics - Experiment physics.comp-ph Other Fields of Physics |
url | https://dx.doi.org/10.1007/s41781-020-00048-6 http://cds.cern.ch/record/2718077 |
work_keys_str_mv | AT amadiog geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT ananyaa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT apostolakisj geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT bandieramontem geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT banerjees geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT bhattacharyyaa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT bianchinic geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT bitzesg geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT canalp geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT carminatif geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT chaparroamaroo geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT cosmog geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT definelichtjc geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT droganv geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT duheml geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT elvirad geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT fuentesj geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT gheataa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT gheatam geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT graveym geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT goulasi geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT haririf geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT junsy geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT konstantinovd geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT kumawath geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT limajg geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT maldonadoromoa geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT martinezcastroj geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT matop geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT nikitinat geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT novaess geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT novakm geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT pedrokevin geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT pokorskiw geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT ribona geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT schmitzr geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT seghalr geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT shadurao geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT tcherniaeve geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT vallecorsas geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT wenzels geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep AT zhangy geantvresultsfromtheprototypeofconcurrentvectorparticletransportsimulationinhep |