Cargando…
Fast convolutional neural networks for identifying long-lived particles in a high-granularity calorimeter
We present a first proof of concept to directly use neural network based pattern recognition to trigger on distinct calorimeter signatures from displaced particles, such as those that arise from the decays of exotic long-lived particles. The study is performed for a high granularity forward calorime...
Autores principales: | Alimena, Juliette, Iiyama, Yutaro, Kieseler, Jan |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/15/12/P12006 http://cds.cern.ch/record/2718183 |
Ejemplares similares
-
Detecting long-lived particles trapped in detector material at the LHC
por: Kieseler, Jan, et al.
Publicado: (2021) -
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
Search for long-lived neutral particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter
por: Aaboud, Morad, et al.
Publicado: (2019) -
Search for neutral long-lived particles in $pp$ collisions at $ \sqrt{s} $ = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter
por: Aad, Georges, et al.
Publicado: (2022) -
Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021)