Cargando…
Deep Sets based Neural Networks for Impact Parameter Flavour Tagging in ATLAS
This work introduces a new architecture for Flavour Tagging based on Deep Sets, which models the jet as a set of tracks, in order to identify the experimental signatures of jets containing heavy flavour hadrons using the impact parameters and kinematics of the tracks. This approach is an evolution w...
Autor principal: | The ATLAS collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2718948 |
Ejemplares similares
-
Graph Neural Network Jet Flavour Tagging with the ATLAS Detector
por: The ATLAS collaboration
Publicado: (2022) -
Neural Network Jet Flavour Tagging with the Upgraded ATLAS Inner Tracker Detector at the High-Luminosity LHC
por: The ATLAS collaboration
Publicado: (2022) -
Real-time flavour tagging selection in ATLAS
por: Zivkovic, Lidija, et al.
Publicado: (2015) -
Real-time flavour tagging selection in ATLAS
por: Nass, Christian, et al.
Publicado: (2021) -
Real-time Flavour Tagging Selection in ATLAS
por: Hetherly, Jeffrey Wayne, et al.
Publicado: (2015)