Cargando…
Machine learning applications for Hadron Colliders: LHC lifetime optimization
The Large Hadron Collider is a indescribably complicated system with numerous intertwined systems, each impacts in it’s own way the dynamics and stability of the protons. As such, building a model of the particle losses occurring withing the LHC is an extremely daunting task, but it would offer valu...
Autor principal: | Coyle, Loic Thomas Davies |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2719933 |
Ejemplares similares
-
MD 4510 : Working point exploration for use in lifetime optimization by machine learning
por: Coyle, Loic Thomas Davies, et al.
Publicado: (2019) -
Application of machine learning techniques at the CERN Large Hadron Collider
por: Van der Veken, Frederik, et al.
Publicado: (2020) -
Lifetime of Asymmetric Colliding Beams in the LHC
por: Jowett, John, et al.
Publicado: (2017) -
LHC: Large Hadron Collider
por: CERN. Geneva
Publicado: (1990) -
The large hadron collider (LHC)
por: Wilson, Edmund J N
Publicado: (1992)