Cargando…
Machine learning meets quantum physics
Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as w...
Autores principales: | Schütt, Kristof, Chmiela, Stefan, Lilienfeld, O, Tkatchenko, Alexandre, Tsuda, Koji, Müller, Klaus-Robert |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-40245-7 http://cds.cern.ch/record/2720425 |
Ejemplares similares
-
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Quantum-chemical insights from deep tensor neural networks
por: Schütt, Kristof T., et al.
Publicado: (2017) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
BIGDML—Towards accurate quantum machine learning force fields for materials
por: Sauceda, Huziel E., et al.
Publicado: (2022) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Chmiela, Stefan, et al.
Publicado: (2018)