Cargando…
Discrete spacetime symmetries and particle mixing in non-Hermitian scalar quantum field theories
We discuss second quantization, discrete symmetry transformations, and inner products in free non-Hermitian scalar quantum field theories with PT symmetry, focusing on a prototype model of two complex scalar fields with anti-Hermitian mass mixing. Whereas the definition of the inner product is uniqu...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.102.125030 http://cds.cern.ch/record/2722398 |
Sumario: | We discuss second quantization, discrete symmetry transformations, and inner products in free non-Hermitian scalar quantum field theories with PT symmetry, focusing on a prototype model of two complex scalar fields with anti-Hermitian mass mixing. Whereas the definition of the inner product is unique for theories described by Hermitian Hamiltonians, its formulation is not unique for non-Hermitian Hamiltonians. Energy eigenstates are not orthogonal with respect to the conventional Dirac inner product, so we must consider additional discrete transformations to define a positive-definite norm. We clarify the relationship between canonical-conjugate operators and introduce the additional discrete symmetry C′, previously introduced for quantum-mechanical systems, and show that the C′PT inner product does yield a positive-definite norm, and hence is appropriate for defining the Fock space in non-Hermitian models with PT symmetry in terms of energy eigenstates. We also discuss similarity transformations between PT-symmetric non-Hermitian scalar quantum field theories and Hermitian theories, showing that they would require modification in the presence of interactions. As an illustration of our discussion, we compare particle mixing in a Hermitian theory and in the corresponding non-Hermitian model with PT symmetry, showing how the latter maintains unitarity and exhibits mixing between scalar and pseudoscalar bosons. |
---|