Cargando…

Cryopumping and Vacuum Systems

The understanding of complex and/or large vacuum systems operating at cryogenic temperatures requires a specific knowledge of the vacuum science at such temperatures. At room temperature, molecules with a low binding energy to a surface are not pumped. However, at cryogenic temperatures, their sojou...

Descripción completa

Detalles Bibliográficos
Autor principal: Baglin, Vincent
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:http://cds.cern.ch/record/2723432
Descripción
Sumario:The understanding of complex and/or large vacuum systems operating at cryogenic temperatures requires a specific knowledge of the vacuum science at such temperatures. At room temperature, molecules with a low binding energy to a surface are not pumped. However, at cryogenic temperatures, their sojourn time is significantly increased, thanks to the temperature reduction, which allow a "cryopumping". This lecture gives an introduction to the field of cryogenic vacuum, discussing surface desorption, sticking probability, thermal transpiration, adsorption isotherms, vapour pressure of usual gases, industrial surfaces and roughness factors. These aspects are illustrated with the case of the Large Hardon Collider explaining its beam screen and its cryosorber, leaks and beam vacuum system modelling in a cryogenic environment. Finally, operation of cryogenic beam vacuum systems is discussed for LHC and other cryogenic machines.