Cargando…
Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark
We apply an Adversarially Learned Anomaly Detection (ALAD) algorithm to the problem of detecting new physics processes in proton-proton collisions at the Large Hadron Collider. Anomaly detection based on ALAD matches performances reached by Variational Autoencoders, with a substantial improvement in...
Autores principales: | Knapp, Oliver, Cerri, Olmo, Dissertori, Guenther, Nguyen, Thong Q., Pierini, Maurizio, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjp/s13360-021-01109-4 http://cds.cern.ch/record/2723971 |
Ejemplares similares
-
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
por: Cerri, Olmo, et al.
Publicado: (2018) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning
por: Chen, Cheng, et al.
Publicado: (2020)