Cargando…

Further studies on the physics potential of an experiment using LHC neutrinos

We discuss an experiment to investigate neutrino physics at the LHC, with emphasis on tau flavour. As described in our previous paper Beni et al (2019 J. Phys. G: Nucl. Part. Phys. 46 115008), the detector can be installed in the decommissioned TI18 tunnel, ≈480 m downstream the ATLAS cavern, after...

Descripción completa

Detalles Bibliográficos
Autores principales: Beni, N., Brucoli, M., Cafaro, V., Camporesi, T., Cerutti, F., Dallavalle, G.M., Danzeca, S., De Roeck, A., De Rújula, A., Fasanella, D., Giordano, V., Guandalini, C., Ioannisyan, A., Lazic, D., Margotti, A., Lo Meo, S., Navarria, F.L., Patrizii, L., Rovelli, T., Sabaté-Gilarte, M., Sanchez Galan, F., Santos Diaz, P., Sirri, G., Szillasi, Z., Wulz, C.-E.
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1361-6471/aba7ad
http://cds.cern.ch/record/2724550
_version_ 1780965972010598400
author Beni, N.
Brucoli, M.
Cafaro, V.
Camporesi, T.
Cerutti, F.
Dallavalle, G.M.
Danzeca, S.
De Roeck, A.
De Rújula, A.
Fasanella, D.
Giordano, V.
Guandalini, C.
Ioannisyan, A.
Lazic, D.
Margotti, A.
Lo Meo, S.
Navarria, F.L.
Patrizii, L.
Rovelli, T.
Sabaté-Gilarte, M.
Sanchez Galan, F.
Santos Diaz, P.
Sirri, G.
Szillasi, Z.
Wulz, C.-E.
author_facet Beni, N.
Brucoli, M.
Cafaro, V.
Camporesi, T.
Cerutti, F.
Dallavalle, G.M.
Danzeca, S.
De Roeck, A.
De Rújula, A.
Fasanella, D.
Giordano, V.
Guandalini, C.
Ioannisyan, A.
Lazic, D.
Margotti, A.
Lo Meo, S.
Navarria, F.L.
Patrizii, L.
Rovelli, T.
Sabaté-Gilarte, M.
Sanchez Galan, F.
Santos Diaz, P.
Sirri, G.
Szillasi, Z.
Wulz, C.-E.
author_sort Beni, N.
collection CERN
description We discuss an experiment to investigate neutrino physics at the LHC, with emphasis on tau flavour. As described in our previous paper Beni et al (2019 J. Phys. G: Nucl. Part. Phys. 46 115008), the detector can be installed in the decommissioned TI18 tunnel, ≈480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity η, where neutrino energies can exceed a TeV. This paper focuses on exploring the neutrino pseudorapity versus energy phase space available in TI18 in order to optimize the detector location and acceptance for neutrinos originating at the pp interaction point, in contrast to neutrinos from pion and kaon decays. The studies are based on the comparison of simulated pp collisions at 13 TeV: PYTHIA events of heavy quark (c and b) production, compared to DPMJET minimum bias events (including charm) with produced particles traced through realistic LHC optics with FLUKA. Our studies favour a configuration where the detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < η < 9.2. In this configuration, the flux at high energies (0.5–1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which ≈50% are electron neutrinos and ≈5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is found small at those high energies. With 150 fb−1 of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current (CC) interactions and over 50 tau neutrino CC events. These events provide useful information in view of a high statistics experiment at HL–LHC. The electron and muon neutrino samples can extend the knowledge of the charm PDF to a new region of x, which is dominated by theory uncertainties. The tau neutrino sample can provide first experience on reconstruction of tau neutrino events in a very boosted regime.
id cern-2724550
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27245502022-03-31T02:38:57Zdoi:10.1088/1361-6471/aba7adhttp://cds.cern.ch/record/2724550engBeni, N.Brucoli, M.Cafaro, V.Camporesi, T.Cerutti, F.Dallavalle, G.M.Danzeca, S.De Roeck, A.De Rújula, A.Fasanella, D.Giordano, V.Guandalini, C.Ioannisyan, A.Lazic, D.Margotti, A.Lo Meo, S.Navarria, F.L.Patrizii, L.Rovelli, T.Sabaté-Gilarte, M.Sanchez Galan, F.Santos Diaz, P.Sirri, G.Szillasi, Z.Wulz, C.-E.Further studies on the physics potential of an experiment using LHC neutrinosphysics.ins-detDetectors and Experimental Techniqueshep-phParticle Physics - Phenomenologyhep-exParticle Physics - ExperimentWe discuss an experiment to investigate neutrino physics at the LHC, with emphasis on tau flavour. As described in our previous paper Beni et al (2019 J. Phys. G: Nucl. Part. Phys. 46 115008), the detector can be installed in the decommissioned TI18 tunnel, ≈480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity η, where neutrino energies can exceed a TeV. This paper focuses on exploring the neutrino pseudorapity versus energy phase space available in TI18 in order to optimize the detector location and acceptance for neutrinos originating at the pp interaction point, in contrast to neutrinos from pion and kaon decays. The studies are based on the comparison of simulated pp collisions at 13 TeV: PYTHIA events of heavy quark (c and b) production, compared to DPMJET minimum bias events (including charm) with produced particles traced through realistic LHC optics with FLUKA. Our studies favour a configuration where the detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < η < 9.2. In this configuration, the flux at high energies (0.5–1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which ≈50% are electron neutrinos and ≈5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is found small at those high energies. With 150 fb−1 of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current (CC) interactions and over 50 tau neutrino CC events. These events provide useful information in view of a high statistics experiment at HL–LHC. The electron and muon neutrino samples can extend the knowledge of the charm PDF to a new region of x, which is dominated by theory uncertainties. The tau neutrino sample can provide first experience on reconstruction of tau neutrino events in a very boosted regime.We discuss an experiment to investigate neutrino physics at the LHC in Run 3, with emphasis on tau flavour. As described in our previous paper [arXiv:1903.06564v1], the detector can be installed in the decommissioned TI18 tunnel, about 480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. In that location, the prolongation of the beam Line-of-Sight from Interaction Point IP1 to TI18 traverses about 100 m of rock. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity eta, where neutrino energies can exceed a TeV. This paper focuses on optimizing global features of the experiment, like detector mass and acceptance. Since the neutrino-nucleon interaction cross section grows almost linearly with energy, the detector can be light and still collect a considerable sample of neutrino events; in the present study it weighs less than 3 tons. The detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < eta < 9.2. In this configuration, the flux at high energies (0.5-1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which about 50% are electron neutrinos and about 5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is studied by means of simulations that embed the LHC optics and found small at high energies. The above studies indicate that with 150 /fb of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current interactions and over 50 tau neutrino charged current events.arXiv:2004.07828oai:cds.cern.ch:27245502020-04-16
spellingShingle physics.ins-det
Detectors and Experimental Techniques
hep-ph
Particle Physics - Phenomenology
hep-ex
Particle Physics - Experiment
Beni, N.
Brucoli, M.
Cafaro, V.
Camporesi, T.
Cerutti, F.
Dallavalle, G.M.
Danzeca, S.
De Roeck, A.
De Rújula, A.
Fasanella, D.
Giordano, V.
Guandalini, C.
Ioannisyan, A.
Lazic, D.
Margotti, A.
Lo Meo, S.
Navarria, F.L.
Patrizii, L.
Rovelli, T.
Sabaté-Gilarte, M.
Sanchez Galan, F.
Santos Diaz, P.
Sirri, G.
Szillasi, Z.
Wulz, C.-E.
Further studies on the physics potential of an experiment using LHC neutrinos
title Further studies on the physics potential of an experiment using LHC neutrinos
title_full Further studies on the physics potential of an experiment using LHC neutrinos
title_fullStr Further studies on the physics potential of an experiment using LHC neutrinos
title_full_unstemmed Further studies on the physics potential of an experiment using LHC neutrinos
title_short Further studies on the physics potential of an experiment using LHC neutrinos
title_sort further studies on the physics potential of an experiment using lhc neutrinos
topic physics.ins-det
Detectors and Experimental Techniques
hep-ph
Particle Physics - Phenomenology
hep-ex
Particle Physics - Experiment
url https://dx.doi.org/10.1088/1361-6471/aba7ad
http://cds.cern.ch/record/2724550
work_keys_str_mv AT benin furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT brucolim furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT cafarov furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT camporesit furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT ceruttif furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT dallavallegm furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT danzecas furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT deroecka furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT derujulaa furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT fasanellad furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT giordanov furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT guandalinic furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT ioannisyana furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT lazicd furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT margottia furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT lomeos furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT navarriafl furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT patriziil furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT rovellit furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT sabategilartem furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT sanchezgalanf furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT santosdiazp furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT sirrig furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT szillasiz furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos
AT wulzce furtherstudiesonthephysicspotentialofanexperimentusinglhcneutrinos