Cargando…
Machine learning technique for signal-background separation of nuclear interaction vertices in the CMS detector
The CMS inner tracking system is a fully silicon-based high precision detector. Accurate knowledge of the positions of active and inactive elements is important for simulating the detector, planning detector upgrades, and reconstructing charged particle tracks. Nuclear interactions of hadrons with t...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2725003 |
Ejemplares similares
-
Machine Learning Techniques for JetMET Data Certification of the CMS Detector
por: CMS Collaboration
Publicado: (2023) -
A new approach for CMS RPC current monitoring using Machine Learning techniques
por: CMS Collaboration
Publicado: (2020) -
Measurement of the structure of the inner tracking detector of the CMS experiment using nuclear interactions with data collected in 2015
por: CMS Collaboration
Publicado: (2016) -
Background in the CMS Drift Tubes and detector ageing monitoring: Run 3 to Run 2 comparison
por: CMS Collaboration
Publicado: (2023) -
Background studies in the CMS muon system
por: CMS Collaboration
Publicado: (2022)