Cargando…
Meccanica analitica: meccanica classica, meccanica lagrangiana e hamiltoniana e teoria della stabilità
Il testo parte da una rivisitazione teorica della meccanica classica newtoniana e del suo linguaggio matematico che si conclude con un'analisi critica della meccanica classica newtoniana. Si passa quindi alle formulazioni lagrangiane e hamiltoniane della meccanica classica, discutendo in partic...
Autor principal: | |
---|---|
Lenguaje: | ita |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-88-470-3998-8 http://cds.cern.ch/record/2727061 |
Sumario: | Il testo parte da una rivisitazione teorica della meccanica classica newtoniana e del suo linguaggio matematico che si conclude con un'analisi critica della meccanica classica newtoniana. Si passa quindi alle formulazioni lagrangiane e hamiltoniane della meccanica classica, discutendo in particolare il rapporto tra simmetrie e costanti del moto all'interno di varie versioni del teorema di Noether e analoghi risultati. I capitoli sulla meccanica hamiltoniana, oltre al materiale standard come le parentesi di Poisson, la geometria simplettica, la formulazione di Hamilton-Jacobi e principi variazionali, includono alcuni risultati teorici importanti come il teorema di Liouville e il teorema di ricorrenza di Poincaré. La teoria della stabilità è introdotta e discussa nell'approccio di Liapunov. Il linguaggio adottato in tutto il testo è quello della geometria differenziale, che in ogni caso viene introdotta gradualmente. Un complemento finale include la teoria di base dei sistemi di equazioni differenziali ordinarie e dei sistemi con alcune generalizzazioni alla teoria sulle varietà. Diverse appendici introducono alcuni strumenti matematici come la teoria delle forme differenziali, la derivata di Lie e la teoria dell'integrazione su varietà. Il libro include diversi esercizi risolti. Il libro si rivolge agli studenti di Matematica e Fisica per i corsi di Meccanica Razionale e Meccanica Analitica. |
---|