Cargando…
Can mathematics be proved consistent?: Gödel's shorthand notes & lectures on incompleteness
Kurt Gödel (1906–1978) shook the mathematical world in 1931 by a result that has become an icon of 20th century science: The search for rigour in proving mathematical theorems had led to the formalization of mathematical proofs, to the extent that such proving could be reduced to the application of...
Autor principal: | von Plato, Jan |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-50876-0 http://cds.cern.ch/record/2727151 |
Ejemplares similares
-
Saved from the cellar: Gerhard Gentzen’s shorthand notes on logic and foundations of mathematics
por: von Plato, Jan
Publicado: (2017) -
Gödel's theorem: an incomplete guide to its use and abuse
por: Franzen, Torkel
Publicado: (2005) -
Elements of mathematics: from Euclid to Godel
por: Stillwell, John
Publicado: (2016) -
Extensional Gödel functional interpretation: a consistency proof of classical analysis
por: Luckhardt, Horst
Publicado: (1973) -
Gödel's proof
por: Nagel, Ernest, et al.
Publicado: (1959)