Cargando…
Layout and Performance of HPK Prototype LGAD Sensors for the High-Granularity Timing Detector
The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector(LGAD) technology, will cover the pseudo-rapidity region of 2.4<|η|<4.0 with two end caps on each side and a total area of 6.4 m 2 . The timing per...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2020.164379 http://cds.cern.ch/record/2727494 |
Sumario: | The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector(LGAD) technology, will cover the pseudo-rapidity region of 2.4<|η|<4.0 with two end caps on each side and a total area of 6.4 m 2 . The timing performance can be improved by implanting an internal gain layer that can produce signals with a fast rising edge. It significantly improves the signal-to-noise ratio. The required average timing resolution per track for a minimum ionizing particle is 30 ps at the start and 50 ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1MeV neutron-equivalent fluence up to 2.5 × 10 15 n eq /cm 2 including a safety factor of 1.5 before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-ups at the HL-LHC. The layout and performance of the various versions of LGAD prototypes produced by Hamamatsu(HPK) have been studied by the ATLAS Collaboration. The breakdown voltages, depletion voltages, inter-pad gaps, collected charge as well as the time resolution have been measured and the production yield of large size sensors has been evaluated. |
---|