Cargando…
Parametrized classifiers for optimal EFT sensitivity
We study unbinned multivariate analysis techniques, based on Statistical Learning, for indirect new physics searches at the LHC in the Effective Field Theory framework. We focus in particular on high-energy ZW production with fully leptonic decays, modeled at different degrees of refinement up to NL...
Autores principales: | Chen, Siyu, Glioti, Alfredo, Panico, Giuliano, Wulzer, Andrea |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2021)247 http://cds.cern.ch/record/2727495 |
Ejemplares similares
-
High-energy EFT probes with fully differential Drell-Yan measurements
por: Panico, Giuliano, et al.
Publicado: (2021) -
Electroweak Precision Tests in High-Energy Diboson Processes
por: Franceschini, Roberto, et al.
Publicado: (2017) -
Energy helps accuracy: electroweak precision tests at hadron colliders
por: Farina, Marco, et al.
Publicado: (2016) -
Tree boosting for learning EFT parameters
por: Chatterjee, Suman, et al.
Publicado: (2021) -
Diboson Interference Resurrection
por: Panico, Giuliano, et al.
Publicado: (2017)