Cargando…
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering. An important domain for the application of these networks is the FGPA-based first layer of real-time data filtering at...
Autores principales: | Iiyama, Yutaro, Cerminara, Gianluca, Gupta, Abhijay, Kieseler, Jan, Loncar, Vladimir, Pierini, Maurizio, Qasim, Shah Rukh, Rieger, Marcel, Summers, Sioni, Van Onsem, Gerrit, Wozniak, Kinga Anna, Ngadiuba, Jennifer, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Rankin, Dylan, Jindariani, Sergo, Liu, Mia, Pedro, Kevin, Tran, Nhan, Kreinar, Edward, Wu, Zhenbin |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3389/fdata.2020.598927 http://cds.cern.ch/record/2728798 |
Ejemplares similares
-
Fast convolutional neural networks on FPGAs with hls4ml
por: Aarrestad, Thea, et al.
Publicado: (2021) -
Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML
por: Loncar, Vladimir, et al.
Publicado: (2021) -
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
por: Heintz, Aneesh, et al.
Publicado: (2020) -
Fast inference of Boosted Decision Trees in FPGAs for particle physics
por: Summers, Sioni, et al.
Publicado: (2020) -
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
por: Fahim, Farah, et al.
Publicado: (2021)