Cargando…
Implementation of Long Short-Term Memory Neural Networks in High-Level Synthesis Targeting FPGAs
Field programmable gate arrays (FPGAs) offer flexibility in programmable systems, making them ideal for hardware implementations of machine learning algorithms. The effectiveness of machine learning (ML) methods has been demonstrated successfully in particle physics computations, particularly in Lar...
Autor principal: | Rao, Richa |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2729154 |
Ejemplares similares
-
Neural Network-Based Primary Vertex Reconstruction with FPGAs for the Upgrade of the CMS Level-1 Trigger System
por: Brown, Christopher Edward, et al.
Publicado: (2022) -
Generalized Machine Learning Quantization Implementation for High Level Synthesis Targeting FPGAs
por: Trahms, Matthew Karl
Publicado: (2022) -
A Prototype ROI Builder for the Second Level Trigger of ATLAS Implemented in FPGAs
por: Blair, R E, et al.
Publicado: (1999) -
Radiation effects in FPGAs
por: Wang, J J
Publicado: (2003) -
FPGAs in 2005 and Beyond
por: Alfke, Peter
Publicado: (2005)