Cargando…
Statistical field theory for neural networks
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions...
Autores principales: | Helias, Moritz, Dahmen, David |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-46444-8 http://cds.cern.ch/record/2729480 |
Ejemplares similares
-
Statistical Field Theories
por: Collective
Publicado: (2002) -
Neural fields: theory and applications
por: Coombes, Stephen, et al.
Publicado: (2014) -
Statistical field theory: an introduction to exactly solved models in statistical physics
por: Mussardo, Giuseppe
Publicado: (2020) -
Neural networks and statistical learning
por: Du, Ke-Lin, et al.
Publicado: (2019) -
Statistical theory and inference
por: Olive, David J
Publicado: (2014)