Cargando…
Optimizing large-scale structure data analysis with the theoretical error likelihood
An important aspect of large-scale structure data analysis is the presence of non-negligible theoretical uncertainties, which become increasingly important on small scales. We show how to incorporate these uncertainties in realistic power spectrum likelihoods by an appropriate change of the fitting...
Autores principales: | Chudaykin, Anton, Ivanov, Mikhail M., Simonović, Marko |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.103.043525 http://cds.cern.ch/record/2733000 |
Ejemplares similares
-
Non-linear perturbation theory extension of the Boltzmann code CLASS
por: Chudaykin, Anton, et al.
Publicado: (2020) -
Mitigating baryonic effects with a theoretical error covariance
por: Moreira, Maria G., et al.
Publicado: (2021) -
Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum
por: Nishimichi, Takahiro, et al.
Publicado: (2020) -
Modeling Galaxies in Redshift Space at the Field Level
por: Schmittfull, Marcel, et al.
Publicado: (2020) -
Precision analysis of the redshift-space galaxy bispectrum
por: Ivanov, Mikhail M., et al.
Publicado: (2021)