Cargando…
Nonlinear system identification: from classical approaches to neural networks, fuzzy models, and Gaussian processes
This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential dif...
Autor principal: | Nelles, Oliver |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-47439-3 http://cds.cern.ch/record/2740517 |
Ejemplares similares
-
The nonlinear workbook: chaos, fractals, cellular automata,neural networks, genetic algorithms, fuzzy logic with C++, Java, symbolic C++ and Reduce programs
por: Steeb, Willi-Hans
Publicado: (1999) -
Nonlinear optical systems: principles, phenomena, and advanced signal processing
por: Binh, Le Nguyen, et al.
Publicado: (2012) -
Nonlinear systems
por: Carmona, Victoriano, et al.
Publicado: (2018) -
Nonlinear systems
por: Archilla, Juan, et al.
Publicado: (2018) -
3rd Technical Conference on Nonlinear Dynamics and Full-Spectrum Processing : Chaotic, Fractal, and Nonlinear Signal Processing
por: Katz, R A
Publicado: (1996)