Cargando…
Surrogate Modeling of the CLIC Final-Focus System using Artificial Neural Networks
Artificial neural networks can be used for creating surrogate models that can replace computationally expensive simulations. In this paper, a surrogate model was created for a subset of the Compact Linear Collider (CLIC) final-focus system. By training on simulation data, we created a model that map...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/16/05/P05012 http://cds.cern.ch/record/2741364 |
Sumario: | Artificial neural networks can be used for creating surrogate models that can replace computationally expensive simulations. In this paper, a surrogate model was created for a subset of the Compact Linear Collider (CLIC) final-focus system. By training on simulation data, we created a model that maps sextupole offsets to luminosity and beam sizes, thus replacing computationally intensive tracking and beam-beam simulations. This model was then used for optimizing the parameters of a random walk procedure for sextupole alignment. |
---|