Cargando…
Anomaly Detection With Conditional Variational Autoencoders
Exploiting the rapid advances in probabilistic inference, in particular variational Bayes and variational autoencoders (VAEs), for anomaly detection (AD) tasks remains an open research question. Previous works argued that training VAE models only with inliers is insufficient and the framework should...
Autores principales: | Pol, Adrian Alan, Berger, Victor, Cerminara, Gianluca, Germain, Cecile, Pierini, Maurizio |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2742923 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Autoencoders for Real-Time SUEP Detection
por: Chhibra, Simranjit Singh, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
por: Cerri, Olmo, et al.
Publicado: (2018)