Cargando…
Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2
Screening currents are field-induced dynamic phenomena which occur in superconducting materials, leading to persistent magnetization. Such currents are of importance in ReBCO tapes, where the large size of the superconducting filaments gives rise to strong magnetization phenomena. In consequence, su...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1361-6668/abbb17 http://cds.cern.ch/record/2744083 |
_version_ | 1780968604975497216 |
---|---|
author | Bortot, Lorenzo Mentink, Matthias Petrone, Carlo Van Nugteren, Jeroen Kirby, Glyn Pentella, Mariano Verweij, Arjan Schöps, Sebastian |
author_facet | Bortot, Lorenzo Mentink, Matthias Petrone, Carlo Van Nugteren, Jeroen Kirby, Glyn Pentella, Mariano Verweij, Arjan Schöps, Sebastian |
author_sort | Bortot, Lorenzo |
collection | CERN |
description | Screening currents are field-induced dynamic phenomena which occur in superconducting materials, leading to persistent magnetization. Such currents are of importance in ReBCO tapes, where the large size of the superconducting filaments gives rise to strong magnetization phenomena. In consequence, superconducting accelerator magnets based on ReBCO tapes might experience a relevant degradation of the magnetic field quality in the magnet aperture, eventually leading to particle beam instabilities. Thus, persistent magnetization phenomena need to be accurately evaluated. In this paper, the 2D finite element model of the Feather-M2.1-2 magnet is presented. The model is used to analyze the influence of the screening current-induced magnetic field on the field quality in the magnet aperture. The model relies on a coupled field formulation for eddy current problems in time-domain. The formulation is introduced and verified against theoretical references. Then, the numerical model of the Feather-M2.1-2 magnet is detailed, highlighting the key assumptions and simplifications. The numerical results are discussed and validated with available magnetic measurements. A satisfactory agreement is found, showing the capability of the numerical tool in providing accurate analysis of the dynamic behavior of the Feather-M2.1-2 magnet. |
id | cern-2744083 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-27440832022-02-01T07:49:51Zdoi:10.1088/1361-6668/abbb17http://cds.cern.ch/record/2744083engBortot, LorenzoMentink, MatthiasPetrone, CarloVan Nugteren, JeroenKirby, GlynPentella, MarianoVerweij, ArjanSchöps, SebastianNumerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2physics.acc-phAccelerators and Storage RingsScreening currents are field-induced dynamic phenomena which occur in superconducting materials, leading to persistent magnetization. Such currents are of importance in ReBCO tapes, where the large size of the superconducting filaments gives rise to strong magnetization phenomena. In consequence, superconducting accelerator magnets based on ReBCO tapes might experience a relevant degradation of the magnetic field quality in the magnet aperture, eventually leading to particle beam instabilities. Thus, persistent magnetization phenomena need to be accurately evaluated. In this paper, the 2D finite element model of the Feather-M2.1-2 magnet is presented. The model is used to analyze the influence of the screening current-induced magnetic field on the field quality in the magnet aperture. The model relies on a coupled field formulation for eddy current problems in time-domain. The formulation is introduced and verified against theoretical references. Then, the numerical model of the Feather-M2.1-2 magnet is detailed, highlighting the key assumptions and simplifications. The numerical results are discussed and validated with available magnetic measurements. A satisfactory agreement is found, showing the capability of the numerical tool in providing accurate analysis of the dynamic behavior of the Feather-M2.1-2 magnet.arXiv:2005.09467oai:cds.cern.ch:27440832020-05-19 |
spellingShingle | physics.acc-ph Accelerators and Storage Rings Bortot, Lorenzo Mentink, Matthias Petrone, Carlo Van Nugteren, Jeroen Kirby, Glyn Pentella, Mariano Verweij, Arjan Schöps, Sebastian Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2 |
title | Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2 |
title_full | Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2 |
title_fullStr | Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2 |
title_full_unstemmed | Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2 |
title_short | Numerical Analysis of the Screening Current-Induced Magnetic Field in the HTS Insert Dipole Magnet Feather-M2.1-2 |
title_sort | numerical analysis of the screening current-induced magnetic field in the hts insert dipole magnet feather-m2.1-2 |
topic | physics.acc-ph Accelerators and Storage Rings |
url | https://dx.doi.org/10.1088/1361-6668/abbb17 http://cds.cern.ch/record/2744083 |
work_keys_str_mv | AT bortotlorenzo numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT mentinkmatthias numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT petronecarlo numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT vannugterenjeroen numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT kirbyglyn numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT pentellamariano numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT verweijarjan numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 AT schopssebastian numericalanalysisofthescreeningcurrentinducedmagneticfieldinthehtsinsertdipolemagnetfeatherm212 |