Cargando…
Geometrizing $ T\overline{T} $
The $ T\overline{T} $ deformation can be formulated as a dynamical change of coordinates. We establish and generalize this relation to curved spaces by coupling the undeformed theory to 2d gravity. For curved space the dynamical change of coordinates is supplemented by a dynamical Weyl transformatio...
Autores principales: | Caputa, Pawel, Datta, Shouvik, Jiang, Yunfeng, Kraus, Per |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP03(2021)140 https://dx.doi.org/10.1007/JHEP09(2022)110 http://cds.cern.ch/record/2744211 |
Ejemplares similares
-
Operator growth in 2d CFT
por: Caputa, Pawel, et al.
Publicado: (2021) -
Characters of irrelevant deformations
por: Datta, Shouvik, et al.
Publicado: (2021) -
Adding Flavor to the Narain Ensemble
por: Datta, Shouvik, et al.
Publicado: (2021) -
The Schwarzian sector of higher spin CFTs
por: Datta, Shouvik
Publicado: (2021) -
Krylov complexity for operators and states
por: Caputa, Paweł
Publicado: (2022)