Cargando…
On self-similar sets with overlaps and inverse theorems for entropy in $ Mathbb{R}^{d}$
The author studies self-similar sets and measures on \mathbb{R}^{d}. Assuming that the defining iterated function system \Phi does not preserve a proper affine subspace, he shows that one of the following holds: (1) the dimension is equal to the trivial bound (the minimum of d and the similarity dim...
Autor principal: | Hochman, Michael |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2744822 |
Ejemplares similares
-
Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on $Mathbb{R}$
por: Poláčik, Peter
Publicado: (2020) -
New complex analytic methods in the study of non-orientable minimal surfaces in $Mathbb{R}^{n}$
por: Alarcón, Antonio, et al.
Publicado: (2020) -
Taming Triangulation Dependence of $T$$^{6}$/$\mathbb{Z}$$_{2}$ x $\mathbb{Z}$$_{2}$ Resolutions
por: Faraggi, A.E., et al.
Publicado: (2021) -
On the existence of proper holomorphic mappings between some special domains in $\rm \mathbb C^n$
por: Ourimi, N, et al.
Publicado: (2000) -
Models with (broken) $\mathbb{Z}$$_{2}$ symmetries
por: Robens, Tania
Publicado: (2022)