Cargando…
Degree theory of immersed hypersurfaces
The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where...
Autores principales: | Rosenberg, Harold, Smith, Graham |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2744826 |
Ejemplares similares
-
Estimates for Fourier transform of measures supported on singular hypersurfaces
por: Ikromov, I A
Publicado: (2004) -
Geometry of hypersurfaces
por: Cecil, Thomas E, et al.
Publicado: (2015) -
Explicit determination of area minimizing hypersurfaces, II
por: Parks, Harold R
Publicado: (1986) -
Matroid connectivity and singularities of configuration hypersurfaces
por: Denham, Graham, et al.
Publicado: (2021) -
Hyperbolicity of projective hypersurfaces
por: Diverio, Simone, et al.
Publicado: (2016)