Cargando…
Fast simulation of the ATLAS calorimeter system with Generative Adversarial Networks
The extensive physics program of the ATLAS experiment at the Large Hadron Collider needs large scale and high fidelity simulated samples which forwards the research and development of better fast simulation techniques. Building on the recent success of deep learning algorithms, Generative Adversaria...
Autor principal: | The ATLAS collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2746032 |
Ejemplares similares
-
The new Fast Calorimeter Simulation in ATLAS
por: The ATLAS collaboration
Publicado: (2018) -
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
Simulating the LHCb hadron calorimeter with generative adversarial networks
por: Lancierini, D, et al.
Publicado: (2019) -
Deep generative models for fast shower simulation in ATLAS
por: The ATLAS collaboration
Publicado: (2018) -
Deep generative models for fast photon shower simulation in ATLAS
por: ATLAS Collaboration
Publicado: (2022)