Cargando…
Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning
We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, rang...
Autores principales: | Anderson, Lara B., Gerdes, Mathis, Gray, James, Krippendorf, Sven, Raghuram, Nikhil, Ruehle, Fabian |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2021)013 http://cds.cern.ch/record/2747157 |
Ejemplares similares
-
Moduli-dependent KK towers and the swampland distance conjecture on the quintic Calabi-Yau manifold
por: Ashmore, Anthony, et al.
Publicado: (2021) -
Geodesics in the extended Kähler cone of Calabi-Yau threefolds
por: Brodie, Callum R., et al.
Publicado: (2021) -
Classifying Calabi-Yau threefolds using infinite distance limits
por: Grimm, Thomas W., et al.
Publicado: (2019) -
SU(3) structures on Calabi-Yau manifolds
por: Larfors, Magdalena
Publicado: (2019) -
Machine Learning of Calabi-Yau Volumes
por: Krefl, Daniel, et al.
Publicado: (2017)