Cargando…
Anomaly Detection on the High Throughput Network of the ATLAS TDAQ System
As the volume of data recorded from systems increases, there is a need to effectively analyse this data to gain insights about the system. One such analysis requirement is anomaly detection. Data-driven approaches such as machine learning, are by construction, able to \emph{learn} (to some degree) t...
Autores principales: | Phiri, Mitchell, Connell, Simon Henry, Pozo Astigarraga, Mikel Eukeni |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2747194 |
Ejemplares similares
-
Machine Learning Techniques in the ATLAS TDAQ Network Monitoring System
por: Wyszynski, Oskar Justynian, et al.
Publicado: (2019) -
ATLAS Trigger and Data Acquisition Upgrades for the High Luminosity LHC
por: Pozo Astigarraga, Mikel Eukeni
Publicado: (2018) -
An SDN based approach for the ATLAS data acquisition network
por: Blikra, Espen, et al.
Publicado: (2016) -
THE ATLAS DATA ACQUISITION SYSTEM IN LHC RUN 2
por: Pozo Astigarraga, Mikel Eukeni
Publicado: (2017) -
The ATLAS Data Acquisition System in LHC Run 2
por: Pozo Astigarraga, Mikel Eukeni
Publicado: (2017)