Cargando…
Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure
Autores principales: | Alla, Sridhar, Adari, Suman |
---|---|
Lenguaje: | eng |
Publicado: |
Apress
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2747512 |
Ejemplares similares
-
Learn Amazon SageMaker
por: Simon, Julien
Publicado: (2020) -
Machine learning in the AWS cloud: add intelligence to applications with Amazon SageMaker and Amazon Rekognition
por: Mishra, Abhishek
Publicado: (2019) -
Mastering machine learning on AWS: advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow
por: Mengle, Saket S R, et al.
Publicado: (2019) -
A Comparative Study of Automated Machine Learning Platforms for Exercise Anthropometry-Based Typology Analysis: Performance Evaluation of AWS SageMaker, GCP VertexAI, and MS Azure
por: Choi, Wansuk, et al.
Publicado: (2023) -
Docker in the cloud: recipes for AWS, Azure, Google, and more
por: Goasguen, Sébastien
Publicado: (2016)