Cargando…

SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis

We introduce an axion-inflation model embedded in the left-right symmetric extension of the Standard Model in which <math display="inline"><msub><mi>W</mi><mi>R</mi></msub></math> is coupled to the axion. This model merges three milestones of...

Descripción completa

Detalles Bibliográficos
Autor principal: Maleknejad, Azadeh
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.104.083518
http://cds.cern.ch/record/2748291
_version_ 1780968970287841280
author Maleknejad, Azadeh
author_facet Maleknejad, Azadeh
author_sort Maleknejad, Azadeh
collection CERN
description We introduce an axion-inflation model embedded in the left-right symmetric extension of the Standard Model in which <math display="inline"><msub><mi>W</mi><mi>R</mi></msub></math> is coupled to the axion. This model merges three milestones of modern cosmology, i.e., inflation, cold dark matter, and baryon asymmetry. Thus, it can naturally explain the observed coincidences among cosmological parameters, i.e., <math display="inline"><msub><mi>η</mi><mi mathvariant="sans-serif">B</mi></msub><mo>≈</mo><msub><mi>P</mi><mi>ζ</mi></msub></math> and <math display="inline"><msub><mi mathvariant="normal">Ω</mi><mrow><mi>DM</mi></mrow></msub><mo>≃</mo><mn>5</mn><msub><mi mathvariant="normal">Ω</mi><mi mathvariant="sans-serif">B</mi></msub></math>. The source of asymmetry is spontaneous <math display="inline"><mi>C</mi><mi>P</mi></math> violation in the physics of inflation, and the lightest right-handed neutrino is the cold dark matter candidate with mass <math display="inline"><msub><mi>m</mi><msub><mi>N</mi><mn>1</mn></msub></msub><mo>∼</mo><mn>1</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></math>. The introduced mechanism does not rely on the largeness of the unconstrained <math display="inline"><mi>C</mi><mi>P</mi></math>-violating phases in the neutrino sector or fine-tuned masses for the heaviest right-handed neutrinos. It has two unknown fundamental scales, i.e., scale of inflation <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>inf</mi></msub><mo>=</mo><msqrt><mrow><mi>H</mi><msub><mi>M</mi><mi mathsize="small">Pl</mi></msub></mrow></msqrt></math> and left-right symmetry breaking <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>F</mi></msub></math>. Sufficient matter asymmetry demands that <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>inf</mi></msub><mo>≈</mo><msub><mi mathvariant="normal">Λ</mi><mi>F</mi></msub></math>. Baryon asymmetry and dark matter today are remnants of a pure quantum effect (chiral anomaly) in inflation, which, thanks to flavor effects, has been memorized by cosmic evolution.
id cern-2748291
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27482912023-10-04T06:00:59Zdoi:10.1103/PhysRevD.104.083518http://cds.cern.ch/record/2748291engMaleknejad, AzadehSU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and BaryogenesisParticle Physics - TheoryGeneral Relativity and CosmologyParticle Physics - PhenomenologyAstrophysics and AstronomyWe introduce an axion-inflation model embedded in the left-right symmetric extension of the Standard Model in which <math display="inline"><msub><mi>W</mi><mi>R</mi></msub></math> is coupled to the axion. This model merges three milestones of modern cosmology, i.e., inflation, cold dark matter, and baryon asymmetry. Thus, it can naturally explain the observed coincidences among cosmological parameters, i.e., <math display="inline"><msub><mi>η</mi><mi mathvariant="sans-serif">B</mi></msub><mo>≈</mo><msub><mi>P</mi><mi>ζ</mi></msub></math> and <math display="inline"><msub><mi mathvariant="normal">Ω</mi><mrow><mi>DM</mi></mrow></msub><mo>≃</mo><mn>5</mn><msub><mi mathvariant="normal">Ω</mi><mi mathvariant="sans-serif">B</mi></msub></math>. The source of asymmetry is spontaneous <math display="inline"><mi>C</mi><mi>P</mi></math> violation in the physics of inflation, and the lightest right-handed neutrino is the cold dark matter candidate with mass <math display="inline"><msub><mi>m</mi><msub><mi>N</mi><mn>1</mn></msub></msub><mo>∼</mo><mn>1</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></math>. The introduced mechanism does not rely on the largeness of the unconstrained <math display="inline"><mi>C</mi><mi>P</mi></math>-violating phases in the neutrino sector or fine-tuned masses for the heaviest right-handed neutrinos. It has two unknown fundamental scales, i.e., scale of inflation <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>inf</mi></msub><mo>=</mo><msqrt><mrow><mi>H</mi><msub><mi>M</mi><mi mathsize="small">Pl</mi></msub></mrow></msqrt></math> and left-right symmetry breaking <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>F</mi></msub></math>. Sufficient matter asymmetry demands that <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>inf</mi></msub><mo>≈</mo><msub><mi mathvariant="normal">Λ</mi><mi>F</mi></msub></math>. Baryon asymmetry and dark matter today are remnants of a pure quantum effect (chiral anomaly) in inflation, which, thanks to flavor effects, has been memorized by cosmic evolution.We introduce an axion-inflation model embedded in the Left-Right symmetric extension of the SM in which $W_R$ is coupled to the axion. This model merges three milestones of modern cosmology, i.e., inflation, cold dark matter, and baryon asymmetry. Thus, it can naturally explain the observed coincidences among cosmological parameters, i.e., $\eta_{B}\approx P_{\zeta}$ and $\Omega_{DM} \simeq 5~\Omega_{B}$. The source of asymmetry is spontaneous CP violation in the physics of inflation, and the lightest right-handed neutrino is the cold dark matter candidate with mass $m_{N_1}\sim 1~GeV$. The introduced mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. It has two unknown fundamental scales, i.e. scale of inflation $\Lambda_{\rm inf}=\sqrt{HM_{Pl}}$ and left-right symmetry breaking $\Lambda_{F}$. Sufficient matter asymmetry demands $\Lambda_{\rm inf}\approx\Lambda_{F}$. The baryon asymmetry and dark matter today are remnants of a pure quantum effect (chiral anomaly) in inflation, which, thanks to flavor effects, are memorized by cosmic evolution.arXiv:2012.11516CERN-TH-2020-217oai:cds.cern.ch:27482912020-12-21
spellingShingle Particle Physics - Theory
General Relativity and Cosmology
Particle Physics - Phenomenology
Astrophysics and Astronomy
Maleknejad, Azadeh
SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis
title SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis
title_full SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis
title_fullStr SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis
title_full_unstemmed SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis
title_short SU(2)$_R$ and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis
title_sort su(2)$_r$ and its axion in cosmology: a common origin for inflation, cold sterile neutrinos, and baryogenesis
topic Particle Physics - Theory
General Relativity and Cosmology
Particle Physics - Phenomenology
Astrophysics and Astronomy
url https://dx.doi.org/10.1103/PhysRevD.104.083518
http://cds.cern.ch/record/2748291
work_keys_str_mv AT maleknejadazadeh su2randitsaxionincosmologyacommonoriginforinflationcoldsterileneutrinosandbaryogenesis