Cargando…
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
We develop a graph generative adversarial network to generate sparse data sets like those produced at the CERN Large Hadron Collider (LHC). We demonstrate this approach by training on and generating sparse representations of MNIST handwritten digit images and jets of particles in proton-proton colli...
Autores principales: | Kansal, Raghav, Duarte, Javier, Orzari, Breno, Tomei, Thiago, Pierini, Maurizio, Touranakou, Mary, Vlimant, Jean-Roch, Gunopulos, Dimitrios |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2748371 |
Ejemplares similares
-
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC
por: Orzari, Breno, et al.
Publicado: (2021) -
Review of High-Quality Random Number Generators
por: James, Frederick, et al.
Publicado: (2019) -
Generative Models for Fast Calorimeter Simulation: the LHCb case
por: Chekalina, Viktoria, et al.
Publicado: (2019)