Cargando…

Inflationary magnetogenesis in the perturbative regime

While during inflation a phase of increasing gauge coupling allows for a scale-invariant hyperelectric spectrum, when the coupling decreases a flat hypermagnetic spectrum can be generated for typical wavelengths larger than the effective horizon. After the gauge coupling flattens out the late-time h...

Descripción completa

Detalles Bibliográficos
Autor principal: Giovannini, Massimo
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1361-6382/abf899
http://cds.cern.ch/record/2748563
_version_ 1780968978328322048
author Giovannini, Massimo
author_facet Giovannini, Massimo
author_sort Giovannini, Massimo
collection CERN
description While during inflation a phase of increasing gauge coupling allows for a scale-invariant hyperelectric spectrum, when the coupling decreases a flat hypermagnetic spectrum can be generated for typical wavelengths larger than the effective horizon. After the gauge coupling flattens out the late-time hypermagnetic power spectra outside the horizon in the radiation epoch are determined by the hyperelectric fields at the end of inflation whereas the opposite is true in the case of decreasing coupling. Instead of imposing an abrupt freeze after inflation, we consider a smooth evolution of the mode functions by positing that the gauge couplings and their conformal time derivatives are always continuous together with the background extrinsic curvature. The amplified gauge power spectra are classified according to their transformation properties under the duality symmetry. After clarifying the role of the comoving and of the physical spectra in the formulation of the relevant magnetogenesis constraints, the parameter space of the scenario is scrutinized. It turns out that a slightly blue hyperelectric spectrum during inflation may lead to a quasi-flat hypermagnetic spectrum prior to matter radiation equality and before the relevant wavelengths reenter the effective horizon. In this framework the gauge coupling is always perturbative but the induced large-scale magnetic fields can be of the order of a few hundredths of a nG and over typical length scales between a fraction of the Mpc and 100 Mpc prior to the gravitational collapse of the protogalaxy.
id cern-2748563
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27485632023-10-04T08:55:53Zdoi:10.1088/1361-6382/abf899http://cds.cern.ch/record/2748563engGiovannini, MassimoInflationary magnetogenesis in the perturbative regimehep-thParticle Physics - Theoryhep-phParticle Physics - Phenomenologyastro-ph.COAstrophysics and Astronomygr-qcGeneral Relativity and CosmologyWhile during inflation a phase of increasing gauge coupling allows for a scale-invariant hyperelectric spectrum, when the coupling decreases a flat hypermagnetic spectrum can be generated for typical wavelengths larger than the effective horizon. After the gauge coupling flattens out the late-time hypermagnetic power spectra outside the horizon in the radiation epoch are determined by the hyperelectric fields at the end of inflation whereas the opposite is true in the case of decreasing coupling. Instead of imposing an abrupt freeze after inflation, we consider a smooth evolution of the mode functions by positing that the gauge couplings and their conformal time derivatives are always continuous together with the background extrinsic curvature. The amplified gauge power spectra are classified according to their transformation properties under the duality symmetry. After clarifying the role of the comoving and of the physical spectra in the formulation of the relevant magnetogenesis constraints, the parameter space of the scenario is scrutinized. It turns out that a slightly blue hyperelectric spectrum during inflation may lead to a quasi-flat hypermagnetic spectrum prior to matter radiation equality and before the relevant wavelengths reenter the effective horizon. In this framework the gauge coupling is always perturbative but the induced large-scale magnetic fields can be of the order of a few hundredths of a nG and over typical length scales between a fraction of the Mpc and 100 Mpc prior to the gravitational collapse of the protogalaxy.While during inflation a phase of increasing gauge coupling allows for a scale-invariant hyperelectric spectrum, when the coupling decreases a flat hypermagnetic spectrum can be generated for typical wavelengths larger than the effective horizon. After the gauge coupling flattens out the late-time hypermagnetic power spectra outside the horizon in the radiation epoch are determined by the hyperelectric fields at the end of inflation whereas the opposite is true in the case of decreasing coupling. Instead of imposing an abrupt freeze after inflation, we consider a smooth evolution of the mode functions by positing that the gauge couplings and their conformal time derivatives are always continuous together with the background extrinsic curvature. The amplified gauge power spectra are classified according to their transformation properties under the duality symmetry. After clarifying the role of the comoving and of the physical spectra in the formulation of the relevant magnetogenesis constraints, the parameter space of the scenario is scrutinized. It turns out that a slightly blue hyperelectric spectrum during inflation may lead to a quasi-flat hypermagnetic spectrum prior to matter radiation equality and before the relevant wavelengths reenter the effective horizon. In this framework the gauge coupling is always perturbative but the induced large-scale magnetic fields can be of the order of a few hundredths of a nG and over typical length scales between a fraction of the Mpc and $100$ Mpc prior to the gravitational collapse of the protogalaxy.arXiv:2012.14720oai:cds.cern.ch:27485632020-12-29
spellingShingle hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
astro-ph.CO
Astrophysics and Astronomy
gr-qc
General Relativity and Cosmology
Giovannini, Massimo
Inflationary magnetogenesis in the perturbative regime
title Inflationary magnetogenesis in the perturbative regime
title_full Inflationary magnetogenesis in the perturbative regime
title_fullStr Inflationary magnetogenesis in the perturbative regime
title_full_unstemmed Inflationary magnetogenesis in the perturbative regime
title_short Inflationary magnetogenesis in the perturbative regime
title_sort inflationary magnetogenesis in the perturbative regime
topic hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
astro-ph.CO
Astrophysics and Astronomy
gr-qc
General Relativity and Cosmology
url https://dx.doi.org/10.1088/1361-6382/abf899
http://cds.cern.ch/record/2748563
work_keys_str_mv AT giovanninimassimo inflationarymagnetogenesisintheperturbativeregime