Cargando…
Jet tagging in the Lund plane with graph networks
The identification of boosted heavy particles such as top quarks or vector bosons is one of the key problems arising in experimental studies at the Large Hadron Collider. In this article, we introduce LundNet, a novel jet tagging method which relies on graph neural networks and an efficient descript...
Autores principales: | Dreyer, Frédéric A., Qu, Huilin |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP03(2021)052 http://cds.cern.ch/record/2748811 |
Ejemplares similares
-
Leveraging universality of jet taggers through transfer learning
por: Dreyer, Frédéric A., et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
ParticleNet: Jet Tagging via Particle Clouds
por: Qu, Huilin, et al.
Publicado: (2019) -
Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment
por: Paganini, Michela
Publicado: (2017)