Cargando…
End-to-end Sinkhorn Autoencoder with Noise Generator
In this work, we propose a novel end-to-end Sinkhorn Autoencoder with a noise generator for efficient data collection simulation. Simulating processes that aim at collecting experimental data is crucial for multiple real-life applications, including nuclear medicine, astronomy, and high energy physi...
Autores principales: | Deja, Kamil, Dubiński, Jan, Nowak, Piotr, Wenzel, Sandro, Spurek, Przemysław, Trzciński, Tomasz |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/ACCESS.2020.3048622 http://cds.cern.ch/record/2749256 |
Ejemplares similares
-
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
Sampling the Riemann-Theta Boltzmann Machine
por: Carrazza, Stefano, et al.
Publicado: (2018) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
por: Pappalardo, Alessandro, et al.
Publicado: (2022)