Cargando…
Hashing and metric learning for charged particle tracking
We propose a novel approach to charged particle tracking at high intensity particle colliders based on Approximate Nearest Neighbors search. With hundreds of thousands of measurements per collision to be reconstructed e.g. at the High Luminosity Large Hadron Collider, the currently employed combinat...
Autores principales: | Amrouche, Sabrina, Kiehn, Moritz, Golling, Tobias, Salzburger, Andreas |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2750641 |
Ejemplares similares
-
Similarity hashing for charged particle tracking
por: Amrouche, Sabrina, et al.
Publicado: (2019) -
The Tracking Machine Learning challenge : Throughput phase
por: Amrouche, Sabrina, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Hashing and similarity learning for tracking with the HL-LHC ATLAS detector
por: Kiehn, Moritz, et al.
Publicado: (2020)