Cargando…
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a comprehensive particle-level view of the event by combining information from the calorimeters and the trackers, significantly improving the detector resolution for jets and the missing transverse momentum...
Autores principales: | Pata, Joosep, Duarte, Javier, Vlimant, Jean-Roch, Pierini, Maurizio, Spiropulu, Maria |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-021-09158-w http://cds.cern.ch/record/2750781 |
Ejemplares similares
-
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Sampling the Riemann-Theta Boltzmann Machine
por: Carrazza, Stefano, et al.
Publicado: (2018) -
Progress towards an improved particle flow algorithm at CMS with machine learning
por: Mokhtar, Farouk, et al.
Publicado: (2023) -
Explaining machine-learned particle-flow reconstruction
por: Mokhtar, Farouk, et al.
Publicado: (2021)