Cargando…

Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD

In this contribution we present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking (IB) corrections to the quark-connected hadronic-vacuum-polarization (HVP) contribution to the anomalous magnetic moment of the muon.The results are obtained adopting the RM123 appr...

Descripción completa

Detalles Bibliográficos
Autores principales: Giusti, Davide, Lubicz, Vittorio, Martinelli, Guido, Sanfilippo, Francesco, Simula, Silvano
Lenguaje:eng
Publicado: SISSA 2019
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.317.0063
http://cds.cern.ch/record/2750947
_version_ 1780969163398840320
author Giusti, Davide
Lubicz, Vittorio
Martinelli, Guido
Sanfilippo, Francesco
Simula, Silvano
author_facet Giusti, Davide
Lubicz, Vittorio
Martinelli, Guido
Sanfilippo, Francesco
Simula, Silvano
author_sort Giusti, Davide
collection CERN
description In this contribution we present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking (IB) corrections to the quark-connected hadronic-vacuum-polarization (HVP) contribution to the anomalous magnetic moment of the muon.The results are obtained adopting the RM123 approach in the quenched-QED approximation and using the QCD gauge configurations generated by the ETM Collaboration with $N_f = 2+1+1$ dynamical quarks, at three values of the lattice spacing ($a \simeq 0.062, 0.082, 0.089$ fm), at several lattice volumes and with pion masses between $\simeq 210$ and $\simeq 450$ MeV.After the extrapolations to the physical pion mass and to the continuum and infinite-volume limits the contributions of the light, strange and charm quarks are respectively equal to $\delta a_\mu^{\rm HVP}(ud) = 7.1 ~ (2.5) \cdot 10^{-10}$, $\delta a_\mu^{\rm HVP}(s) = -0.0053 ~ (33) \cdot 10^{-10}$ and $\delta a_\mu^{\rm HVP}(c) = 0.0182 ~ (36) \cdot 10^{-10}$.At leading order in $\alpha_{em}$ and $(m_d - m_u) / \Lambda_{QCD}$ we obtain $\delta a_\mu^{\rm HVP}(udsc) = 7.1 ~ (2.9) \cdot 10^{-10}$, which is currently the most accurate determination of the IB corrections to $a_\mu^{\rm HVP}$.
id cern-2750947
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher SISSA
record_format invenio
spelling cern-27509472021-02-09T08:23:21Zdoi:10.22323/1.317.0063http://cds.cern.ch/record/2750947engGiusti, DavideLubicz, VittorioMartinelli, GuidoSanfilippo, FrancescoSimula, SilvanoIsospin-breaking corrections to the muon magnetic anomaly in Lattice QCDhep-phParticle Physics - Phenomenologyhep-exParticle Physics - Experimenthep-latParticle Physics - LatticeIn this contribution we present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking (IB) corrections to the quark-connected hadronic-vacuum-polarization (HVP) contribution to the anomalous magnetic moment of the muon.The results are obtained adopting the RM123 approach in the quenched-QED approximation and using the QCD gauge configurations generated by the ETM Collaboration with $N_f = 2+1+1$ dynamical quarks, at three values of the lattice spacing ($a \simeq 0.062, 0.082, 0.089$ fm), at several lattice volumes and with pion masses between $\simeq 210$ and $\simeq 450$ MeV.After the extrapolations to the physical pion mass and to the continuum and infinite-volume limits the contributions of the light, strange and charm quarks are respectively equal to $\delta a_\mu^{\rm HVP}(ud) = 7.1 ~ (2.5) \cdot 10^{-10}$, $\delta a_\mu^{\rm HVP}(s) = -0.0053 ~ (33) \cdot 10^{-10}$ and $\delta a_\mu^{\rm HVP}(c) = 0.0182 ~ (36) \cdot 10^{-10}$.At leading order in $\alpha_{em}$ and $(m_d - m_u) / \Lambda_{QCD}$ we obtain $\delta a_\mu^{\rm HVP}(udsc) = 7.1 ~ (2.9) \cdot 10^{-10}$, which is currently the most accurate determination of the IB corrections to $a_\mu^{\rm HVP}$.In this contribution we present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking (IB) corrections to the quark-connected hadronic-vacuum-polarization (HVP) contribution to the anomalous magnetic moment of the muon. The results are obtained adopting the RM123 approach in the quenched-QED approximation and using the QCD gauge configurations generated by the ETM Collaboration with $N_f = 2+1+1$ dynamical quarks, at three values of the lattice spacing ($a \simeq 0.062, 0.082, 0.089$ fm), at several lattice volumes and with pion masses between $\simeq 210$ and $\simeq 450$ MeV. After the extrapolations to the physical pion mass and to the continuum and infinite-volume limits the contributions of the light, strange and charm quarks are respectively equal to $\delta a_\mu^{\rm HVP}(ud) = 7.1 ~ (2.5) \cdot 10^{-10}$, $\delta a_\mu^{\rm HVP}(s) = -0.0053 ~ (33) \cdot 10^{-10}$ and $\delta a_\mu^{\rm HVP}(c) = 0.0182 ~ (36) \cdot 10^{-10}$. At leading order in $\alpha_{em}$ and $(m_d - m_u) / \Lambda_{QCD}$ we obtain $\delta a_\mu^{\rm HVP}(udsc) = 7.1 ~ (2.9) \cdot 10^{-10}$, which is currently the most accurate determination of the IB corrections to $a_\mu^{\rm HVP}$.SISSAarXiv:1909.01962oai:cds.cern.ch:27509472019-09-04
spellingShingle hep-ph
Particle Physics - Phenomenology
hep-ex
Particle Physics - Experiment
hep-lat
Particle Physics - Lattice
Giusti, Davide
Lubicz, Vittorio
Martinelli, Guido
Sanfilippo, Francesco
Simula, Silvano
Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD
title Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD
title_full Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD
title_fullStr Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD
title_full_unstemmed Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD
title_short Isospin-breaking corrections to the muon magnetic anomaly in Lattice QCD
title_sort isospin-breaking corrections to the muon magnetic anomaly in lattice qcd
topic hep-ph
Particle Physics - Phenomenology
hep-ex
Particle Physics - Experiment
hep-lat
Particle Physics - Lattice
url https://dx.doi.org/10.22323/1.317.0063
http://cds.cern.ch/record/2750947
work_keys_str_mv AT giustidavide isospinbreakingcorrectionstothemuonmagneticanomalyinlatticeqcd
AT lubiczvittorio isospinbreakingcorrectionstothemuonmagneticanomalyinlatticeqcd
AT martinelliguido isospinbreakingcorrectionstothemuonmagneticanomalyinlatticeqcd
AT sanfilippofrancesco isospinbreakingcorrectionstothemuonmagneticanomalyinlatticeqcd
AT simulasilvano isospinbreakingcorrectionstothemuonmagneticanomalyinlatticeqcd