Cargando…
Test-beam characterisation of the CLICTD technology demonstrator - a small collection electrode High-Resistivity CMOS pixel sensor with simultaneous time and energy measurement
The CLIC Tracker Detector (CLICTD) is a monolithic pixel sensor. It is fabricated in a 180 nm CMOS imaging process, modified with an additional deep low-dose n-type implant to obtain full lateral depletion. The sensor features a small collection diode, which is essen- tial for achieving a low input...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2751113 |
Sumario: | The CLIC Tracker Detector (CLICTD) is a monolithic pixel sensor. It is fabricated in a 180 nm CMOS imaging process, modified with an additional deep low-dose n-type implant to obtain full lateral depletion. The sensor features a small collection diode, which is essen- tial for achieving a low input capacitance. The CLICTD sensor was designed as a technology demonstrator in the context of the tracking detector studies for the Compact Linear Collider (CLIC). Its design characteristics are of broad interest beyond CLIC, for HL-LHC track- ing detector upgrades. It is produced in two different pixel flavours: one with a continuous deep n-type implant, and one with a segmented n-type implant to ensure fast charge collec- tion. The pixel matrix consists of 16 × 128 detection channels measuring 300 μm × 30 μm. Each detection channel is segmented into eight sub-pixels to reduce the amount of digital circuity while maintaining a small collection electrode pitch. This paper presents the char- acterisation results of the CLICTD sensor in a particle beam. The different pixel flavours are compared in detail by using the simultaneous time-over-threshold and time-of-arrival measurement functionalities. Most notably, a time resolution down to (5.8 ± 0.1) ns and a spatial resolution down to (4.6 ± 0.2) μm are measured. The hit detection efficiency is found to be well above 99.7% for thresholds of the order of several hundred electrons. |
---|