Cargando…
Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters
Data analysis in science, e.g., high-energy particle physics, is often subject to an intractable likelihood if the observables and observations span a high-dimensional input space. Typically the problem is solved by reducing the dimensionality using feature engineering and histograms, whereby the la...
Autores principales: | Wunsch, Stefan, Jörger, Simon, Wolf, Roger, Quast, Günter |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-020-00049-5 http://cds.cern.ch/record/2751415 |
Ejemplares similares
-
Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0
por: Lundberg, J., et al.
Publicado: (2009) -
Reducing the dependence of the neural network function to systematic uncertainties in the input space
por: Wunsch, Stefan, et al.
Publicado: (2019) -
Maximum likelihood estimators for inverse problems with nuisance parameters
por: Bindslev, H
Publicado: (1997) -
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020)