Cargando…
Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
Deep Neural Networks (DNNs) come into the limelight in High Energy Physics (HEP) in order to manipulate the increasing amount of data encountered in the next generation of accelerators. Recently, the HEP community has suggested Generative Adversarial Networks (GANs) to replace traditional time-consu...
Autores principales: | Chang, Su Yeon, Vallecorsa, Sofia, Combarro, Elías F., Carminati, Federico |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2751529 |
Ejemplares similares
-
Running the Dual-PQC GAN on noisy simulators and real quantum hardware
por: Chang, Su Yeon, et al.
Publicado: (2023) -
Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
por: Chang, Su Yeon, et al.
Publicado: (2021) -
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2021) -
Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection
por: Grossi, Michele, et al.
Publicado: (2022)