Cargando…

hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices

Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scien...

Descripción completa

Detalles Bibliográficos
Autores principales: Fahim, Farah, Hawks, Benjamin, Herwig, Christian, Hirschauer, James, Jindariani, Sergo, Tran, Nhan, Carloni, Luca P., Di Guglielmo, Giuseppe, Harris, Philip, Krupa, Jeffrey, Rankin, Dylan, Valentin, Manuel Blanco, Hester, Josiah, Luo, Yingyi, Mamish, John, Orgrenci-Memik, Seda, Aarrestad, Thea, Javed, Hamza, Loncar, Vladimir, Pierini, Maurizio, Pol, Adrian Alan, Summers, Sioni, Duarte, Javier, Hauck, Scott, Hsu, Shih-Chieh, Ngadiuba, Jennifer, Liu, Mia, Hoang, Duc, Kreinar, Edward, Wu, Zhenbin
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:http://cds.cern.ch/record/2754189
_version_ 1780969390227849216
author Fahim, Farah
Hawks, Benjamin
Herwig, Christian
Hirschauer, James
Jindariani, Sergo
Tran, Nhan
Carloni, Luca P.
Di Guglielmo, Giuseppe
Harris, Philip
Krupa, Jeffrey
Rankin, Dylan
Valentin, Manuel Blanco
Hester, Josiah
Luo, Yingyi
Mamish, John
Orgrenci-Memik, Seda
Aarrestad, Thea
Javed, Hamza
Loncar, Vladimir
Pierini, Maurizio
Pol, Adrian Alan
Summers, Sioni
Duarte, Javier
Hauck, Scott
Hsu, Shih-Chieh
Ngadiuba, Jennifer
Liu, Mia
Hoang, Duc
Kreinar, Edward
Wu, Zhenbin
author_facet Fahim, Farah
Hawks, Benjamin
Herwig, Christian
Hirschauer, James
Jindariani, Sergo
Tran, Nhan
Carloni, Luca P.
Di Guglielmo, Giuseppe
Harris, Philip
Krupa, Jeffrey
Rankin, Dylan
Valentin, Manuel Blanco
Hester, Josiah
Luo, Yingyi
Mamish, John
Orgrenci-Memik, Seda
Aarrestad, Thea
Javed, Hamza
Loncar, Vladimir
Pierini, Maurizio
Pol, Adrian Alan
Summers, Sioni
Duarte, Javier
Hauck, Scott
Hsu, Shih-Chieh
Ngadiuba, Jennifer
Liu, Mia
Hoang, Duc
Kreinar, Edward
Wu, Zhenbin
author_sort Fahim, Farah
collection CERN
description Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.
id cern-2754189
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27541892023-01-31T09:39:31Zhttp://cds.cern.ch/record/2754189engFahim, FarahHawks, BenjaminHerwig, ChristianHirschauer, JamesJindariani, SergoTran, NhanCarloni, Luca P.Di Guglielmo, GiuseppeHarris, PhilipKrupa, JeffreyRankin, DylanValentin, Manuel BlancoHester, JosiahLuo, YingyiMamish, JohnOrgrenci-Memik, SedaAarrestad, TheaJaved, HamzaLoncar, VladimirPierini, MaurizioPol, Adrian AlanSummers, SioniDuarte, JavierHauck, ScottHsu, Shih-ChiehNgadiuba, JenniferLiu, MiaHoang, DucKreinar, EdwardWu, Zhenbinhls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devicesphysics.ins-detDetectors and Experimental Techniquescs.ARComputing and Computerscs.LGComputing and ComputersAccessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.arXiv:2103.05579FERMILAB-CONF-21-080-SCDoai:cds.cern.ch:27541892021-03-09
spellingShingle physics.ins-det
Detectors and Experimental Techniques
cs.AR
Computing and Computers
cs.LG
Computing and Computers
Fahim, Farah
Hawks, Benjamin
Herwig, Christian
Hirschauer, James
Jindariani, Sergo
Tran, Nhan
Carloni, Luca P.
Di Guglielmo, Giuseppe
Harris, Philip
Krupa, Jeffrey
Rankin, Dylan
Valentin, Manuel Blanco
Hester, Josiah
Luo, Yingyi
Mamish, John
Orgrenci-Memik, Seda
Aarrestad, Thea
Javed, Hamza
Loncar, Vladimir
Pierini, Maurizio
Pol, Adrian Alan
Summers, Sioni
Duarte, Javier
Hauck, Scott
Hsu, Shih-Chieh
Ngadiuba, Jennifer
Liu, Mia
Hoang, Duc
Kreinar, Edward
Wu, Zhenbin
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
title hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
title_full hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
title_fullStr hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
title_full_unstemmed hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
title_short hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
title_sort hls4ml: an open-source codesign workflow to empower scientific low-power machine learning devices
topic physics.ins-det
Detectors and Experimental Techniques
cs.AR
Computing and Computers
cs.LG
Computing and Computers
url http://cds.cern.ch/record/2754189
work_keys_str_mv AT fahimfarah hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT hawksbenjamin hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT herwigchristian hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT hirschauerjames hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT jindarianisergo hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT trannhan hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT carlonilucap hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT diguglielmogiuseppe hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT harrisphilip hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT krupajeffrey hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT rankindylan hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT valentinmanuelblanco hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT hesterjosiah hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT luoyingyi hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT mamishjohn hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT orgrencimemikseda hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT aarrestadthea hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT javedhamza hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT loncarvladimir hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT pierinimaurizio hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT poladrianalan hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT summerssioni hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT duartejavier hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT hauckscott hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT hsushihchieh hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT ngadiubajennifer hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT liumia hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT hoangduc hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT kreinaredward hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices
AT wuzhenbin hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices