Cargando…
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scien...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2754189 |
_version_ | 1780969390227849216 |
---|---|
author | Fahim, Farah Hawks, Benjamin Herwig, Christian Hirschauer, James Jindariani, Sergo Tran, Nhan Carloni, Luca P. Di Guglielmo, Giuseppe Harris, Philip Krupa, Jeffrey Rankin, Dylan Valentin, Manuel Blanco Hester, Josiah Luo, Yingyi Mamish, John Orgrenci-Memik, Seda Aarrestad, Thea Javed, Hamza Loncar, Vladimir Pierini, Maurizio Pol, Adrian Alan Summers, Sioni Duarte, Javier Hauck, Scott Hsu, Shih-Chieh Ngadiuba, Jennifer Liu, Mia Hoang, Duc Kreinar, Edward Wu, Zhenbin |
author_facet | Fahim, Farah Hawks, Benjamin Herwig, Christian Hirschauer, James Jindariani, Sergo Tran, Nhan Carloni, Luca P. Di Guglielmo, Giuseppe Harris, Philip Krupa, Jeffrey Rankin, Dylan Valentin, Manuel Blanco Hester, Josiah Luo, Yingyi Mamish, John Orgrenci-Memik, Seda Aarrestad, Thea Javed, Hamza Loncar, Vladimir Pierini, Maurizio Pol, Adrian Alan Summers, Sioni Duarte, Javier Hauck, Scott Hsu, Shih-Chieh Ngadiuba, Jennifer Liu, Mia Hoang, Duc Kreinar, Edward Wu, Zhenbin |
author_sort | Fahim, Farah |
collection | CERN |
description | Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery. |
id | cern-2754189 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27541892023-01-31T09:39:31Zhttp://cds.cern.ch/record/2754189engFahim, FarahHawks, BenjaminHerwig, ChristianHirschauer, JamesJindariani, SergoTran, NhanCarloni, Luca P.Di Guglielmo, GiuseppeHarris, PhilipKrupa, JeffreyRankin, DylanValentin, Manuel BlancoHester, JosiahLuo, YingyiMamish, JohnOrgrenci-Memik, SedaAarrestad, TheaJaved, HamzaLoncar, VladimirPierini, MaurizioPol, Adrian AlanSummers, SioniDuarte, JavierHauck, ScottHsu, Shih-ChiehNgadiuba, JenniferLiu, MiaHoang, DucKreinar, EdwardWu, Zhenbinhls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devicesphysics.ins-detDetectors and Experimental Techniquescs.ARComputing and Computerscs.LGComputing and ComputersAccessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.arXiv:2103.05579FERMILAB-CONF-21-080-SCDoai:cds.cern.ch:27541892021-03-09 |
spellingShingle | physics.ins-det Detectors and Experimental Techniques cs.AR Computing and Computers cs.LG Computing and Computers Fahim, Farah Hawks, Benjamin Herwig, Christian Hirschauer, James Jindariani, Sergo Tran, Nhan Carloni, Luca P. Di Guglielmo, Giuseppe Harris, Philip Krupa, Jeffrey Rankin, Dylan Valentin, Manuel Blanco Hester, Josiah Luo, Yingyi Mamish, John Orgrenci-Memik, Seda Aarrestad, Thea Javed, Hamza Loncar, Vladimir Pierini, Maurizio Pol, Adrian Alan Summers, Sioni Duarte, Javier Hauck, Scott Hsu, Shih-Chieh Ngadiuba, Jennifer Liu, Mia Hoang, Duc Kreinar, Edward Wu, Zhenbin hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices |
title | hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices |
title_full | hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices |
title_fullStr | hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices |
title_full_unstemmed | hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices |
title_short | hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices |
title_sort | hls4ml: an open-source codesign workflow to empower scientific low-power machine learning devices |
topic | physics.ins-det Detectors and Experimental Techniques cs.AR Computing and Computers cs.LG Computing and Computers |
url | http://cds.cern.ch/record/2754189 |
work_keys_str_mv | AT fahimfarah hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT hawksbenjamin hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT herwigchristian hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT hirschauerjames hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT jindarianisergo hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT trannhan hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT carlonilucap hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT diguglielmogiuseppe hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT harrisphilip hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT krupajeffrey hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT rankindylan hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT valentinmanuelblanco hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT hesterjosiah hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT luoyingyi hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT mamishjohn hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT orgrencimemikseda hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT aarrestadthea hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT javedhamza hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT loncarvladimir hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT pierinimaurizio hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT poladrianalan hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT summerssioni hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT duartejavier hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT hauckscott hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT hsushihchieh hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT ngadiubajennifer hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT liumia hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT hoangduc hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT kreinaredward hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices AT wuzhenbin hls4mlanopensourcecodesignworkflowtoempowerscientificlowpowermachinelearningdevices |