Cargando…
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scien...
Autores principales: | Fahim, Farah, Hawks, Benjamin, Herwig, Christian, Hirschauer, James, Jindariani, Sergo, Tran, Nhan, Carloni, Luca P., Di Guglielmo, Giuseppe, Harris, Philip, Krupa, Jeffrey, Rankin, Dylan, Valentin, Manuel Blanco, Hester, Josiah, Luo, Yingyi, Mamish, John, Orgrenci-Memik, Seda, Aarrestad, Thea, Javed, Hamza, Loncar, Vladimir, Pierini, Maurizio, Pol, Adrian Alan, Summers, Sioni, Duarte, Javier, Hauck, Scott, Hsu, Shih-Chieh, Ngadiuba, Jennifer, Liu, Mia, Hoang, Duc, Kreinar, Edward, Wu, Zhenbin |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2754189 |
Ejemplares similares
-
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
por: Pappalardo, Alessandro, et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Accelerating Recurrent Neural Networks for Gravitational Wave Experiments
por: Que, Zhiqiang, et al.
Publicado: (2021)