Cargando…
Dynamical systems on homogeneous spaces
A homogeneous flow is a dynamical system generated by the action of a closed subgroup H of a Lie group G on a homogeneous space of G. The study of such systems is of great significance because they constitute an algebraic model for more general and more complicated systems. Also, there are abundant...
Autor principal: | Starkov, Alexander N |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2000
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2754423 |
Ejemplares similares
-
Invariant nearly Kaehler f-structures on homogeneous spaces
por: Balashchenko, V V
Publicado: (2002) -
Infinite dimensional homogeneous reductive spaces and finite index conditional expectations
por: Andruchow, E, et al.
Publicado: (1995) -
On homogeneous symmetries for evolution systems with constraints
por: Sergyeyev, A G
Publicado: (2001) -
Homogeneous Finsler Spaces
por: Deng, Shaoqiang
Publicado: (2012) -
On homogeneous Lorentzian spaces whose null geodesics are homogeneous
por: Meessen, P
Publicado: (2005)